Switchable Interaction in Molecular Double Qubits

Summary Quantum information processing (QIP) could revolutionize how we simulate and understand quantum systems. Any QIP scheme requires both individual units (qubits) that have long phase memories and switchable units that can be placed between the qubits. Here, we describe supramolecular systems where {Cr 7 Ni} rings are used as qubits, linked by redox-switchable {Ru 2 M} oxo-centered triangles (M = Zn, Ni, or Co). The supramolecular assemblies have been structurally characterized and involve two {Cr 7 Ni} rings bound to {Ru 2 M} triangles through iso -nicotinate ligands. Detailed physical studies, including electrochemistry and electron paramagnetic resonance spectroscopy, show that when M = Co, the supramolecular assembly has the physical characteristics needed to implement the √iSWAP gate, which is an important entangling two-qubit gate. Detailed simulations show that the fidelity of this gate is potentially very high and depends on the phase memory time of the {Cr 7 Ni} qubits but not the {Ru 2 Co} switch.

[1]  M. Ward,et al.  Functional behaviour from controlled self-assembly: challenges and prospects. , 2013, Chemical Society reviews.

[2]  W. Wernsdorfer,et al.  Electrically driven nuclear spin resonance in single-molecule magnets , 2014, Science.

[3]  Kiyoshi Sato,et al.  Diruthenium complexes with hydrotris(1-pyrazolyl)borate face-capping ligands involving {Ru2(μ-O or μ-OH)(μ-carboxylato)2} cores , 2001 .

[4]  A. Aukauloo,et al.  Synthesis, structure, spectroscopy and redox chemistry of square-planar nickel(II) complexes with tetradentate o-phenylenedioxamidates and related ligands. , 2005, Dalton transactions.

[5]  M. Omary,et al.  Unusual Magnetic Behavior of Six-Coordinate, Mixed-Ligand Re(II) Complexes: Origin of a Strong Temperature-Independent Paramagnetism † , 2003 .

[6]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One Second , 2012, Science.

[7]  M. Yamashita,et al.  Variation of Kondo temperature induced by molecule-substrate decoupling in film formation of bis(phthalocyaninato)terbium(III) molecules on Au(111). , 2014, ACS nano.

[8]  Ronald Hanson,et al.  Coherent manipulation of single spins in semiconductors , 2008, Nature.

[9]  E. Solano,et al.  Digital Quantum Simulation of Spin Systems in Superconducting Circuits , 2013, 1311.7626.

[10]  Marco Affronte,et al.  Proposal for quantum gates in permanently coupled antiferromagnetic spin rings without need of local fields. , 2005, Physical review letters.

[11]  Arzhang Ardavan,et al.  High fidelity single qubit operations using pulsed electron paramagnetic resonance. , 2005, Physical review letters.

[12]  Tasuku Ito,et al.  Preparation, Structure, and Properties of the Bis(μ-acetato)(μ-oxo)Ruthenium(III) Dimers [Ru2(μ-CH3COO)2(μ-O)(py)6]2+ and [Ru2(μ-CH3COO)2(μ-O)(bpy)2(py)2]2+ , 1991 .

[13]  R. Feynman Simulating physics with computers , 1999 .

[14]  M. Burghard,et al.  The classical and quantum dynamics of molecular spins on graphene , 2015, Nature materials.

[15]  I. G. Fomina,et al.  New antiferromagnetic Mn(II) pivalate polymer: synthesis and reactivity , 2005 .

[16]  Tasuku Ito,et al.  Mixed ruthenium-rhodium trinuclear complex [Ru2Rh(μ3-O)(μ-CH3COO) 6(L)3]+ (L = H2O or pyridine) , 1987 .

[17]  J. Pasán,et al.  Redox switch-off of the ferromagnetic coupling in a mixed-spin tricobalt(II) triple mesocate. , 2009, Journal of the American Chemical Society.

[18]  M Ruben,et al.  Supramolecular spin valves. , 2011, Nature Materials.

[19]  Roderick D. Cannon,et al.  Chemical and physical properties of triangular bridged metal complexes , 1989 .

[20]  Michael N. Leuenberger,et al.  Quantum computing in molecular magnets , 2000, Nature.

[21]  M. Abe,et al.  Enhanced Kinetic Lability of Ru(III) Centers in Oxo-Centered Mixed-Metal Ru2M Trinuclear Complexes (M = Zn and Mg) , 1999 .

[22]  A. Earnshaw,et al.  601. The magnetic properties of some d4-complexes , 1961 .

[23]  E. McInnes,et al.  Electronic Structure of a Mixed-Metal Fluoride-Centered Triangle Complex: A Potential Qubit Component. , 2015, Inorganic chemistry.

[24]  Xuedong Hu,et al.  Mediated gates between spin qubits , 2012, 1207.6063.

[25]  S. Blundell,et al.  Will spin-relaxation times in molecular magnets permit quantum information processing? , 2006, Physical review letters.

[26]  Alessandro Chiesa,et al.  Molecular nanomagnets with switchable coupling for quantum simulation , 2014, Scientific Reports.

[27]  C. Sudha,et al.  Synthesis, X-ray structures, and spectroscopic and electrochemical properties of (μ-oxo)bis(μ-carboxylato)diruthenium complexes having six imidazole bases as terminal ligands , 1998 .

[28]  R. Boča,et al.  Antisymmetric exchange in polynuclear metal complexes , 2010 .

[29]  Tasuku Ito,et al.  Magnetic Properties of Some Triangular Trinuclear Complexes of [Ru_2M(μ-CH_3COO)_6(μ_3-O)(py)_3]^ with a Paramagnetic Ion M , 1995 .

[30]  Paolo Santini,et al.  A modular design of molecular qubits to implement universal quantum gates , 2016, Nature Communications.

[31]  E. Coronado,et al.  Enhancing coherence in molecular spin qubits via atomic clock transitions , 2016, Nature.

[32]  F. Luis,et al.  Design of Magnetic Coordination Complexes for Quantum Computing , 2012 .

[33]  F. Neese,et al.  EPR spectroscopy of a family of Cr(III) 7M(II) (M = Cd, Zn, Mn, Ni) "wheels": studies of isostructural compounds with different spin ground states. , 2009, Chemistry.

[34]  Marco Affronte,et al.  Magnetic Anisotropy of Cr7Ni Spin Clusters on Surfaces , 2012 .

[35]  F. Tuna,et al.  Toward Molecular 4f Single-Ion Magnet Qubits. , 2016, Journal of the American Chemical Society.

[36]  C J Wedge,et al.  Chemical engineering of molecular qubits. , 2012, Physical review letters.

[37]  Masahiro Kitagawa,et al.  A synthetic two-spin quantum bit: g-engineered exchange-coupled biradical designed for controlled-NOT gate operations. , 2012, Angewandte Chemie.

[38]  Eufemio Moreno Pineda,et al.  g-Engineering in Hybrid Rotaxanes To Create AB and AB2 Electron Spin Systems: EPR Spectroscopic Studies of Weak Interactions between Dissimilar Electron Spin Qubits. , 2015, Angewandte Chemie.

[39]  N. Connelly,et al.  Chemical Redox Agents for Organometallic Chemistry , 1996 .

[40]  B. Tsukerblat,et al.  Antisymmetric exchange in the trinuclear clusters of copper (II) , 1975 .

[41]  F. Cotton,et al.  Structural characterization of a basic trinuclear ruthenium acetate , 1972 .

[42]  R. Blessing,et al.  An empirical correction for absorption anisotropy. , 1995, Acta crystallographica. Section A, Foundations of crystallography.

[43]  S. García‐Granda,et al.  Antisymmetric exchange in triangular tricopper(II) complexes: correlation among structural, magnetic, and electron paramagnetic resonance parameters. , 2012, Inorganic chemistry.

[44]  Seth Lloyd,et al.  Universal Quantum Simulators , 1996, Science.

[45]  Jean-Marie Lehn,et al.  Supramolecular Chemistry: Concepts And Perspectives , 2014 .

[46]  Joseph M. Zadrozny,et al.  Millisecond Coherence Time in a Tunable Molecular Electronic Spin Qubit , 2015, ACS central science.

[47]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[48]  Gabriel Aeppli,et al.  Potential for spin-based information processing in a thin-film molecular semiconductor , 2013, Nature.

[49]  Eugenio Coronado,et al.  Spin qubits with electrically gated polyoxometalate molecules. , 2007, Nature nanotechnology.

[50]  Arthur Schweiger,et al.  EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. , 2006, Journal of magnetic resonance.

[51]  W. Wernsdorfer,et al.  Strong spin-phonon coupling between a single-molecule magnet and a carbon nanotube nanoelectromechanical system. , 2013, Nature nanotechnology.

[52]  T. Moriya New Mechanism of Anisotropic Superexchange Interaction , 1960 .

[53]  P. Santini,et al.  Quantum oscillations of the total spin in a heterometallic antiferromagnetic ring: evidence from neutron spectroscopy. , 2007, Physical review letters.

[54]  H. Nowell,et al.  I19, the small-molecule single-crystal diffraction beamline at Diamond Light Source. , 2012, Journal of synchrotron radiation.

[55]  I. Dzyaloshinsky A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics , 1958 .

[56]  T. Meyer,et al.  Electronic Structure and Redox Properties of the Clusters [Ru3O(CH3CO2)6L3]n+ , 1979 .

[57]  D. Loss,et al.  Spin-electric coupling in molecular magnets. , 2008, Physical review letters.

[58]  F. Tuna,et al.  Controlled Synthesis of Nanoscopic Metal Cages. , 2015, Journal of the American Chemical Society.

[59]  Petr Neugebauer,et al.  Room temperature quantum coherence in a potential molecular qubit , 2014, Nature Communications.

[60]  B. Tsukerblat Group-theoretical approaches in molecular magnetism : Metal clusters , 2008 .

[61]  Tasuku Ito,et al.  Magnetic Properties of Oxygen Centered Trinuclear Ruthenium(III) and Rhodium(III) Complexes , 1992 .

[62]  F Troiani,et al.  Molecular engineering of antiferromagnetic rings for quantum computation. , 2004, Physical review letters.

[63]  W. Wernsdorfer,et al.  Electronic read-out of a single nuclear spin using a molecular spin transistor , 2012, Nature.

[64]  Keith S. Murray,et al.  PHI: A powerful new program for the analysis of anisotropic monomeric and exchange‐coupled polynuclear d‐ and f‐block complexes , 2013, J. Comput. Chem..

[65]  T. Takui,et al.  Triple-stranded metallo-helicates addressable as Lloyd's electron spin qubits. , 2010, Journal of the American Chemical Society.

[66]  R. Winpenny,et al.  Synthetic and structural studies of cobalt-pivalate complexes. , 2003, Chemistry.

[67]  H. Nagao,et al.  Synthesis and Structures of Mixed-Valence Oxido-Bridged Diruthenium Complexes Bearing Ethylbis(2-pyridylmethyl)amine , 2014 .

[68]  Edwige Otero,et al.  Quantum tunnelling of the magnetization in a monolayer of oriented single-molecule magnets , 2010, Nature.

[69]  J. Cirac,et al.  Room-Temperature Quantum Bit Memory Exceeding One , 2014 .

[70]  F Troiani,et al.  Molecular nanomagnets as quantum simulators. , 2011, Physical review letters.

[71]  Peter J Stang,et al.  Supramolecular coordination: self-assembly of finite two- and three-dimensional ensembles. , 2011, Chemical reviews.

[72]  Jeremy Levy,et al.  Quantum computing with spin cluster qubits. , 2003, Physical review letters.

[73]  M. Chiesa,et al.  Room-Temperature Quantum Coherence and Rabi Oscillations in Vanadyl Phthalocyanine: Toward Multifunctional Molecular Spin Qubits. , 2016, Journal of the American Chemical Society.

[74]  E. McInnes,et al.  Large zero-field splittings of the ground spin state arising from antisymmetric exchange effects in heterometallic triangles. , 2014, Angewandte Chemie.

[75]  Dante Gatteschi,et al.  High-spin molecules: [Mn12O12(O2CR)16(H2O)4] , 1993 .

[76]  A. Barra,et al.  EPR spectroscopy at very high field , 1990 .

[77]  Stephen Hill,et al.  Influence of electronic spin and spin-orbit coupling on decoherence in mononuclear transition metal complexes. , 2014, Journal of the American Chemical Society.

[78]  ItoTasuku,et al.  Magnetic Properties of Some Triangular Trinuclear Complexes of [Ru2M(μ-CH3COO)6(μ3-O)(py)3]n+ with a Paramagnetic Ion M , 2006 .

[79]  M. Nencki Untersuchungen über die Harnsäuregruppe , 1871 .

[80]  Joan Cano,et al.  Magnetic properties of six-coordinated high-spin cobalt(II) complexes: Theoretical background and its application , 2008 .

[81]  Fernando Luis,et al.  Heterodimetallic [LnLn′] Lanthanide Complexes: Toward a Chemical Design of Two-Qubit Molecular Spin Quantum Gates , 2014, Journal of the American Chemical Society.