Hypercomplex Mathematical Morphology

The natural ordering of grey levels is used in classical mathematical morphology for scalar images to define the erosion/dilation and the evolved operators. Various operators can be sequentially applied to the resulting images always using the same ordering. In this paper we propose to consider the result of a prior transformation to define the imaginary part of a complex image, where the real part is the initial image. Then, total orderings between complex numbers allow defining subsequent morphological operations between complex pixels. More precisely, the total orderings are lexicographic cascades with the local modulus and phase values of these complex images. In this case, the operators take into account simultaneously the information of the initial image and the processed image. In addition, the approach can be generalized to the hypercomplex representation (i.e., real quaternion) by associating to each image three different operations, for instance directional filters. Total orderings initially introduced for colour quaternions are used to define the evolved morphological transformations. Effects of these new operators are illustrated with different examples of filtering.

[1]  Jaakko Astola,et al.  Soft morphological filtering , 1995, Journal of Mathematical Imaging and Vision.

[2]  Nicolas Le Bihan,et al.  Quaternion principal component analysis of color images , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[3]  Todd A. Ell Multi-Vector Color-Image Filters , 2007, 2007 IEEE International Conference on Image Processing.

[4]  Stephen J. Sangwine,et al.  Colour image edge detector based on quaternion convolution , 1998 .

[5]  Gerald Sommer,et al.  Geometric Computing with Clifford Algebras , 2001, Springer Berlin Heidelberg.

[6]  Pierre Soille,et al.  Morphological Image Analysis , 1999 .

[7]  Thomas Bülow,et al.  Hypercomplex signals-a novel extension of the analytic signal to the multidimensional case , 2001, IEEE Trans. Signal Process..

[8]  Thomas Batard,et al.  Clifford-Fourier Transform for Color Image Processing , 2010, Geometric Algebra Computing.

[9]  Jesús Angulo,et al.  Anisotropic Morphological Filters With Spatially-Variant Structuring Elements Based on Image-Dependent Gradient Fields , 2011, IEEE Transactions on Image Processing.

[10]  Frederic Truchetet,et al.  Wavelet Applications in Industrial Processing VI , 2007 .

[11]  Fernand Meyer,et al.  The Viscous Watershed Transform , 2005, Journal of Mathematical Imaging and Vision.

[12]  Valeriy Labunets Clifford Algebras as Unified Language for Image Processing and Pattern Recognition , 2004 .

[13]  Alan L. Yuille,et al.  Statistical morphology , 1991, Optics & Photonics.

[14]  Luc Vincent,et al.  Morphological grayscale reconstruction in image analysis: applications and efficient algorithms , 1993, IEEE Trans. Image Process..

[15]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology. I Dilations and erosions , 1990, Comput. Vis. Graph. Image Process..

[16]  Todd A. Ell Hypercomplex Color Affine Filters , 2007, 2007 IEEE International Conference on Image Processing.

[17]  Isabelle Bloch,et al.  Fuzzy mathematical morphologies: A comparative study , 1995, Pattern Recognit..

[18]  Thomas Batard,et al.  Fourier Transform for Color Image Processing , 2011 .

[19]  Petros Maragos,et al.  Coupled geometric and texture PDE-based segmentation , 2005, IEEE International Conference on Image Processing 2005.

[20]  Fernand Meyer,et al.  News from viscousland , 2007, ISMM.

[21]  Soo-Chang Pei,et al.  Quaternion matrix singular value decomposition and its applications for color image processing , 2003, Proceedings 2003 International Conference on Image Processing (Cat. No.03CH37429).

[22]  Stephen J. Sangwine,et al.  Hypercomplex Fourier Transforms of Color Images , 2007, IEEE Trans. Image Process..

[23]  Isabelle Bloch,et al.  Duality vs. adjunction for fuzzy mathematical morphology and general form of fuzzy erosions and dilations , 2009, Fuzzy Sets Syst..

[24]  Lilong Shi,et al.  Quaternion color texture segmentation , 2007, Comput. Vis. Image Underst..

[25]  Fernand Meyer,et al.  The levelings , 1998 .

[26]  Stephen J. Sangwine,et al.  Hypercomplex Wiener-Khintchine theorem with application to color image correlation , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[27]  Thomas Batard,et al.  A Metric Approach to nD Images Edge Detection with Clifford Algebras , 2009, Journal of Mathematical Imaging and Vision.

[28]  Christine Fernandez-Maloigne,et al.  Spatial and spectral quaternionic approaches for colour images , 2007, Comput. Vis. Image Underst..

[29]  H. Heijmans Morphological image operators , 1994 .

[30]  Valeri G. Labunets,et al.  Spatial—color Clifford algebras for invariant image recognition , 2001 .

[31]  Lucas J. van Vliet,et al.  A nonlinear laplace operator as edge detector in noisy images , 1989, Comput. Vis. Graph. Image Process..

[32]  Henk J. A. M. Heijmans On the construction of morphological operators which are self-dual and activity-extensive , 1994, Signal Process..

[33]  Soo-Chang Pei,et al.  Color image processing by using binary quaternion-moment-preserving thresholding technique , 1999, IEEE Trans. Image Process..

[34]  Garret Sobczyk,et al.  Lectures on Clifford (geometric) algebras and applications , 2004 .

[35]  Stephen J. Sangwine Mathematical Approaches to Linear Vector Filtering of Color Images , 2002, CGIV.

[36]  H. Heijmans,et al.  The algebraic basis of mathematical morphology , 1988 .

[37]  John I. Goutsias,et al.  Mathematical Morphology and its Applications to Image and Signal Processing , 2000, Computational Imaging and Vision.

[38]  Jesús Angulo,et al.  Geometric algebra colour image representations and derived total orderings for morphological operators - Part I: Colour quaternions , 2010, J. Vis. Commun. Image Represent..

[39]  Henk J. A. M. Heijmans,et al.  Inf-Semilattice Approach to Self-Dual Morphology , 2004, Journal of Mathematical Imaging and Vision.

[40]  S. Sangwine Fourier transforms of colour images using quaternion or hypercomplex, numbers , 1996 .

[41]  Jean Paul Frédéric Serra Viscous Lattices , 2005, Journal of Mathematical Imaging and Vision.

[42]  Silvano Di Zenzo,et al.  A note on the gradient of a multi-image , 1986, Comput. Vis. Graph. Image Process..

[43]  Jesús Angulo From Scalar-Valued Images to Hypercomplex Representations and Derived Total Orderings for Morphological Operators , 2009, ISMM.

[44]  A. S. Ramsey The Mathematical Papers of Sir William Rowan Hamilton , 1931, Nature.

[45]  Jean Serra,et al.  Image Analysis and Mathematical Morphology , 1983 .

[46]  Remato Kresch Extension of morphological operations to complete semilattices and its applications to image and video processing , 1998 .

[47]  Henk J. A. M. Heijmans,et al.  The algebraic basis of mathematical morphology : II. Openings and closings , 1991, CVGIP Image Underst..

[48]  Ran El-Yaniv,et al.  Size-density spectra and their application to image classification , 2007, Pattern Recognit..

[49]  Gerald Sommer,et al.  Signal modeling for two-dimensional image structures , 2007, J. Vis. Commun. Image Represent..

[50]  Philippe Carré,et al.  Quaternionic wavelet transform for colour images , 2006, SPIE Optics East.

[51]  Pierre Soille,et al.  Morphological Image Analysis: Principles and Applications , 2003 .

[52]  Michael Felsberg,et al.  The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space , 2004, Journal of Mathematical Imaging and Vision.

[53]  Yehoshua Y. Zeevi,et al.  Representation of colored images by manifolds embedded in higher dimensional non-Euclidean space , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[54]  Henk J. A. M. Heijmans,et al.  Grey-Scale Morphology Based on Fuzzy Logic , 2002, Journal of Mathematical Imaging and Vision.

[55]  Edward R. Dougherty,et al.  Mathematical Morphology in Image Processing , 1992 .

[56]  Jesús Angulo,et al.  Micro-viscous morphological operators , 2007, ISMM.

[57]  Michael Felsberg,et al.  The monogenic signal , 2001, IEEE Trans. Signal Process..

[58]  Ron Kimmel,et al.  A general framework for low level vision , 1998, IEEE Trans. Image Process..