A new paradigm in chipless-RFID: all-dielectric permittivity contrast tags

In this contribution, chipless-RFID tags based on permittivity contrast and implemented as chains of square shaped hole arrays perforated on a dielectric substrate are reported. These all-dielectric tags can be read through near-field by means of a dedicated reader able to detect the presence/absence of such hole array inclusions. Particularly, the effective dielectric constant in the hole array regions is smaller than the one of the host substrate. Thus, for tag reading, a dedicated permittivity sensor able to monitor local changes in the dielectric constant of the tag is used. System validation is carried out by means of a permittivity sensor based on a complementary spiral resonator (CSR) loaded microstrip line. This new type of all-dielectric tags represents a new paradigm in chipless-RFID technology, as far as printed metallic inclusions are avoided. Lower tag cost and potentially higher robustness against aging effects or mechanical friction are advantages of these novel chipless tags.

[1]  S. Tedjini,et al.  Chipless RFID Tag Using Hybrid Coding Technique , 2011, IEEE Transactions on Microwave Theory and Techniques.

[2]  Filippo Costa,et al.  Chipless RFID Tag Exploiting Multifrequency Delta-Phase Quantization Encoding , 2016, IEEE Antennas and Wireless Propagation Letters.

[3]  Christian Damm,et al.  Performance evaluation of left-handed delay lines for RFID backscatter applications , 2008, 2008 IEEE MTT-S International Microwave Symposium Digest.

[4]  K. Vasudevan,et al.  Low-Cost Multiple-Bit Encoded Chipless RFID Tag Using Stepped Impedance Resonator , 2014, IEEE Transactions on Antennas and Propagation.

[5]  I.D. Robertson,et al.  Capacitively-tuned split microstrip resonators for RFID barcodes , 2005, 2005 European Microwave Conference.

[6]  Etienne Perret,et al.  Mastering the Electromagnetic Signature of Chipless RFID Tags , 2012 .

[7]  Li-Rong Zheng,et al.  Design and implementation of a fully reconfigurable chipless RFID tag using Inkjet printing technology , 2008, 2008 IEEE International Symposium on Circuits and Systems.

[8]  S. Tedjini,et al.  A Fully Printable Chipless RFID Tag With Detuning Correction Technique , 2012, IEEE Microwave and Wireless Components Letters.

[9]  Atif Shamim,et al.  3.56-bits/cm $^2$ Compact Inkjet Printed and Application Specific Chipless RFID Tag , 2016, IEEE Antennas and Wireless Propagation Letters.

[10]  Li Li,et al.  Angle-Based Chipless RFID Tag With High Capacity and Insensitivity to Polarization , 2015, IEEE Transactions on Antennas and Propagation.

[11]  R. Jakoby,et al.  A novel passive phase modulator based on LH delay lines for chipless microwave RFID applications , 2009, 2009 IEEE MTT-S International Microwave Workshop on Wireless Sensing, Local Positioning, and RFID.

[12]  N.C. Karmakar,et al.  Design of Chipless RFID Tag for Operation on Flexible Laminates , 2010, IEEE Antennas and Wireless Propagation Letters.

[13]  S. Tedjini,et al.  A compact chipless RFID tag using polarization diversity for encoding and sensing , 2012, 2012 IEEE International Conference on RFID (RFID).

[14]  S. Tedjini,et al.  Temporal multi-frequency encoding technique for chipless RFID applications , 2012, 2012 IEEE/MTT-S International Microwave Symposium Digest.

[15]  Maher Khaliel,et al.  Novel notch modulation algorithm for enhancing the chipless RFID tags coding capacity , 2015, 2015 IEEE International Conference on RFID (RFID).

[16]  Etienne Perret,et al.  Chipless RFID based on group delay encoding , 2011, 2011 IEEE International Conference on RFID-Technologies and Applications.

[17]  Majid Manteghi,et al.  Complex-Natural-Resonance-Based Design of Chipless RFID Tag for High-Density Data , 2014, IEEE Transactions on Antennas and Propagation.

[18]  Christian Damm,et al.  Periodically LC loaded lines for RFID backscatter applications , 2007 .

[19]  Cristian Herrojo,et al.  Spectral signature barcodes implemented by multi-state multi-resonator circuits for chipless RFID tags , 2016, 2016 IEEE MTT-S International Microwave Symposium (IMS).

[20]  Nemai Chandra Karmakar,et al.  Chipless RFID: Bar Code of the Future , 2010, IEEE Microwave Magazine.

[21]  I. Robertson,et al.  RF barcodes using multiple frequency bands , 2005, IEEE MTT-S International Microwave Symposium Digest, 2005..

[22]  S. Tedjini,et al.  High-Capacity Chipless RFID Tag Insensitive to the Polarization , 2012, IEEE Transactions on Antennas and Propagation.

[23]  M. A. Islam,et al.  A Novel Compact Printable Dual-Polarized Chipless RFID System , 2012, IEEE Transactions on Microwave Theory and Techniques.

[24]  Cristian Herrojo,et al.  Near-Field Chipless-RFID System With Erasable/Programmable 40-bit Tags Inkjet Printed on Paper Substrates , 2018, IEEE Microwave and Wireless Components Letters.

[25]  C. Hartmann,et al.  A global SAW ID tag with large data capacity , 2002, 2002 IEEE Ultrasonics Symposium, 2002. Proceedings..

[26]  N.C. Karmakar,et al.  Multiresonator-Based Chipless RFID System for Low-Cost Item Tracking , 2009, IEEE Transactions on Microwave Theory and Techniques.

[27]  E. Perret,et al.  RCS magnitude coding for chipless RFID based on depolarizing tag , 2015, 2015 IEEE MTT-S International Microwave Symposium.

[28]  Etienne Perret,et al.  Toward RCS Magnitude Level Coding for Chipless RFID , 2016, IEEE Transactions on Microwave Theory and Techniques.

[29]  Cristian Herrojo,et al.  High data density and capacity in chipless radiofrequency identification (chipless-RFID) tags based on double-chains of S-shaped split ring resonators (S-SRRs) , 2017 .

[30]  Nemai Chandra Karmakar,et al.  Multiresonator-Based Chipless RFID: Barcode of the Future , 2011 .

[31]  D. Girbau,et al.  Frequency-Coded Chipless RFID Tag Based on Dual-Band Resonators , 2012, IEEE Antennas and Wireless Propagation Letters.

[32]  A. Chamarti,et al.  Transmission Delay Line Based ID Generation Circuit for RFID Applications , 2006, IEEE Microwave and Wireless Components Letters.

[33]  S. Gupta,et al.  Chipless RFID System Based on Group Delay Engineered Dispersive Delay Structures , 2011, IEEE Antennas and Wireless Propagation Letters.

[34]  Jan Machac,et al.  Influence of mutual coupling on performance of small scatterers for chipless RFID tags , 2014, 2014 24th International Conference Radioelektronika.

[35]  F. Martín,et al.  Near-field chipless-RFID tags with sequential bit reading implemented in plastic substrates , 2017, Journal of Magnetism and Magnetic Materials.

[36]  Jan Machac,et al.  A comparison of two ways to reducing the mutual coupling of chipless RFID tag scatterers , 2016, 2016 21st International Conference on Microwave, Radar and Wireless Communications (MIKON).

[37]  N.C. Karmakar,et al.  Phase-Encoded Chipless RFID Transponder for Large-Scale Low-Cost Applications , 2009, IEEE Microwave and Wireless Components Letters.

[38]  Ran Liu,et al.  An ultra-low-cost RFID tag with 1.67 Gbps data rate by ink-jet printing on paper substrate , 2010, 2010 IEEE Asian Solid-State Circuits Conference.

[39]  S. Tedjini,et al.  Design of Compact and Auto-Compensated Single-Layer Chipless RFID Tag , 2012, IEEE Transactions on Microwave Theory and Techniques.

[40]  Cristian Herrojo,et al.  Microwave Encoders for Chipless RFID and Angular Velocity Sensors Based on S-Shaped Split Ring Resonators , 2017, IEEE Sensors Journal.

[41]  Cristian Herrojo,et al.  Near-Field Chipless-RFID System With High Data Capacity for Security and Authentication Applications , 2017, IEEE Transactions on Microwave Theory and Techniques.

[42]  Ferran Paredes,et al.  Printed Magnetoinductive-Wave (MIW) Delay Lines for Chipless RFID Applications , 2012, IEEE Transactions on Antennas and Propagation.

[43]  Lauri Sydanheimo,et al.  A Novel Near-Transparent ASK-Reconfigurable Inkjet-Printed Chipless RFID Tag , 2013, IEEE Antennas and Wireless Propagation Letters.

[44]  A. Hoorfar,et al.  Space-filling curve RFID tags , 2006, 2006 IEEE Radio and Wireless Symposium.

[45]  Jong-Won Yu,et al.  Design of Low-Cost Chipless System Using Printable Chipless Tag With Electromagnetic Code , 2010, IEEE Microwave and Wireless Components Letters.

[46]  Nemai Karmakar,et al.  A spectrally efficient chipless RFID tag based on split-wheel resonator , 2014, 2014 International Workshop on Antenna Technology: Small Antennas, Novel EM Structures and Materials, and Applications (iWAT).