Synchronization, quantum correlations and entanglement in oscillator networks

Synchronization is one of the paradigmatic phenomena in the study of complex systems. It has been explored theoretically and experimentally mostly to understand natural phenomena, but also in view of technological applications. Although several mechanisms and conditions for synchronous behavior in spatially extended systems and networks have been identified, the emergence of this phenomenon has been largely unexplored in quantum systems until very recently. Here we discuss synchronization in quantum networks of different harmonic oscillators relaxing towards a stationary state, being essential the form of dissipation. By local tuning of one of the oscillators, we establish the conditions for synchronous dynamics, in the whole network or in a motif. Beyond the classical regime we show that synchronization between (even unlinked) nodes witnesses the presence of quantum correlations and entanglement. Furthermore, synchronization and entanglement can be induced between two different oscillators if properly linked to a random network.

[1]  J Eisert,et al.  Towards quantum entanglement in nanoelectromechanical devices. , 2004, Physical review letters.

[2]  Maximilian Schlosshauer-Selbach Decoherence and the quantum-to-classical transition , 2008 .

[3]  Laurent Sanchez-Palencia,et al.  Disordered quantum gases under control , 2009, 0911.0629.

[4]  G. Rempe,et al.  An elementary quantum network of single atoms in optical cavities , 2012, Nature.

[5]  Kuan-Liang Liu,et al.  Non-markovian entanglement dynamics of quantum continuous variable systems in thermal environments , 2007, 0706.0996.

[6]  Fabio Benatti,et al.  Irreversible Quantum Dynamics , 2010 .

[7]  W. Zurek,et al.  Quantum discord: a measure of the quantumness of correlations. , 2001, Physical review letters.

[8]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[9]  V. Vedral,et al.  Classical, quantum and total correlations , 2001, quant-ph/0105028.

[10]  U. Peil Engineering vibrations , 2008 .

[11]  Pere Colet,et al.  Quantum correlations and mutual synchronization , 2011, 1105.4129.

[12]  D L Shepelyansky,et al.  Synchronization and bistability of a qubit coupled to a driven dissipative oscillator. , 2008, Physical review letters.

[13]  Germany,et al.  Quantum states and phases in driven open quantum systems with cold atoms , 2008, 0803.1482.

[14]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[15]  Thomas Zell,et al.  Distance dependence of entanglement generation via a bosonic heat bath. , 2008, Physical review letters.

[16]  Jürgen Kurths,et al.  Synchronization - A Universal Concept in Nonlinear Sciences , 2001, Cambridge Nonlinear Science Series.

[17]  J. Morton,et al.  Sustained quantum coherence and entanglement in the avian compass. , 2009, Physical review letters.

[18]  J. Paz,et al.  Dynamics of the entanglement between two oscillators in the same environment. , 2008, Physical review letters.

[19]  David Zueco,et al.  Bringing entanglement to the high temperature limit. , 2010, Physical review letters.

[20]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[21]  Jurgen Kurths,et al.  Synchronization in complex networks , 2008, 0805.2976.

[22]  F. Verstraete,et al.  Quantum computation and quantum-state engineering driven by dissipation , 2009 .

[23]  T. Mančal,et al.  Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems , 2007, Nature.

[24]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[25]  Roberta Zambrini,et al.  Entanglement dynamics of nonidentical oscillators under decohering environments , 2010, 1002.1927.

[26]  K. Brown,et al.  Coupled quantized mechanical oscillators , 2010, Nature.

[27]  W. Choi,et al.  Maximal energy transport through disordered media with the implementation of transmission eigenchannels , 2012, Nature Photonics.

[28]  M. Imboden,et al.  Synchronized Oscillation in Coupled Nanomechanical Oscillators , 2007, Science.

[29]  P. McEuen,et al.  Synchronization of micromechanical oscillators using light , 2011, IEEE Photonic Society 24th Annual Meeting.

[30]  Peter Hänggi,et al.  Quantum stochastic synchronization. , 2006, Physical review letters.

[31]  T. Monz,et al.  An open-system quantum simulator with trapped ions , 2011, Nature.

[32]  U. Weiss Quantum Dissipative Systems , 1993 .

[33]  Florian Marquardt,et al.  Collective dynamics in optomechanical arrays , 2010, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[34]  Berkeley,et al.  Decoherence-Free Subspaces and Subsystems , 2003, quant-ph/0301032.

[35]  G J Milburn,et al.  Synchronization of many nanomechanical resonators coupled via a common cavity field. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[37]  M. Lewenstein,et al.  Quantum Entanglement , 2020, Quantum Mechanics.

[38]  O. Gühne,et al.  Experimental multiparticle entanglement dynamics induced by decoherence , 2010, 1005.1965.

[39]  R. Blatt,et al.  Trapped-ion antennae for the transmission of quantum information , 2010, Nature.

[40]  B. Temelkuran,et al.  Tight-binding description of the coupled defect modes in three-dimensional photonic crystals , 2000, Physical review letters.

[41]  W. H. Zurek,et al.  Einselection and decoherence from an information theory perspective , 2000, Annalen der Physik.

[42]  Jürgen Kurths,et al.  Synchronization: Phase locking and frequency entrainment , 2001 .

[43]  Caldeira,et al.  Influence of damping on quantum interference: An exactly soluble model. , 1985, Physical review. A, General physics.

[44]  Jean-Michel Raimond,et al.  Reversible Decoherence of a Mesoscopic Superposition of Field States , 1997 .

[45]  Arkady Pikovsky,et al.  A universal concept in nonlinear sciences , 2006 .

[46]  Erik Lucero,et al.  Photon shell game in three-resonator circuit quantum electrodynamics , 2010, 1011.3080.

[47]  L. W.,et al.  The Theory of Sound , 1898, Nature.

[48]  Laurent Larger,et al.  Chaos-based communications at high bit rates using commercial fibre-optic links , 2005, Nature.

[49]  Justin R. Caram,et al.  Direct evidence of quantum transport in photosynthetic light-harvesting complexes , 2011, Proceedings of the National Academy of Sciences.