Reducing the human effort for human-robot cooperative object manipulation via control design

This study is concerned with the shared object manipulation problem in a physical Human-Robot Interaction (pHRI) setting. In such setups, the operator manipulates the object with the help of a robot. In this paper, the operator is assigned with the lead role, and the robot is passively following the forces/torques exerted by the operator. We propose a controller that is free from the well-known translation/rotation problem and enhances the operator’s ability to move the object by reducing the human effort. The key point in our study is that the controller is defined based on the instantaneous center of rotation. The passivity of the system including the object and the manipulator has been evaluated. Simulation results validate the theoretical findings on different scenarios of subsequent rotations and translations of the object.