Counting Triangulations of Planar Point Sets

We study the maximal number of triangulations that a planar set of $n$ points can have, and show that it is at most $30^n$. This new bound is achieved by a careful optimization of the charging scheme of Sharir and Welzl (2006), which has led to the previous best upper bound of $43^n$ for the problem. Moreover, this new bound is useful for bounding the number of other types of planar (i.e., crossing-free) straight-line graphs on a given point set. Specifically, it can be used to derive new upper bounds for the number of planar graphs ($207.84^n$), spanning cycles ($O(68.67^n)$), spanning trees ($O(146.69^n)$), and cycle-free graphs ($O(164.17^n)$).

[1]  J. Gross,et al.  Graph Theory and Its Applications , 1998 .

[2]  Warren D. Smith Studies in computational geometry motivated by mesh generation , 1989 .

[3]  Marc Noy,et al.  A lower bound on the number of triangulations of planar point sets , 2004, Comput. Geom..

[4]  Ferran Hurtado,et al.  On the number of plane graphs , 2006, SODA '06.

[5]  Christian Sohler,et al.  Encoding a triangulation as a permutation of its point set , 1997, CCCG.

[6]  Micha Sharir,et al.  Random triangulations of planar point sets , 2006, SCG '06.

[7]  E. Szemerédi,et al.  Crossing-Free Subgraphs , 1982 .

[8]  Raimund Seidel,et al.  New lower bounds for the number of straight-edge triangulations of a planar point set , 2004 .

[9]  Oswin Aichholzer,et al.  Abstract order type extension and new results on the rectilinear crossing number , 2005, EuroCG.

[10]  Emo Welzl,et al.  The Number of Triangulations on Planar Point Sets , 2006, GD.

[11]  Marc Noy,et al.  Counting triangulations of almost-convex polygons , 1997, Ars Comb..

[12]  Colin McDiarmid,et al.  Random planar graphs , 2005, J. Comb. Theory B.

[13]  Raimund Seidel,et al.  A better upper bound on the number of triangulations of a planar point set , 2003, J. Comb. Theory, Ser. A.

[14]  Raimund Seidel,et al.  On the Number of Cycles in Planar Graphs , 2007, COCOON.

[15]  W. T. Tutte,et al.  A Census of Planar Triangulations , 1962, Canadian Journal of Mathematics.

[16]  K. Appel,et al.  Every Planar Map Is Four Colorable , 2019, Mathematical Solitaires & Games.

[17]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[18]  Csaba D. Tóth,et al.  Counting Plane Graphs: Flippability and Its Applications , 2011, WADS.

[19]  J. Thomas The four color theorem , 1977 .

[20]  Jack Snoeyink,et al.  Number of Crossing-Free Geometric Graphs vs. Triangulations , 2008, Electron. Notes Discret. Math..

[21]  Oswin Aichholzer The path of a triangulation , 1999, SCG '99.

[22]  Valery A. Liskovets,et al.  A Pattern of Asymptotic Vertex Valency Distributions in Planar Maps , 1999, J. Comb. Theory, Ser. B.

[23]  Marc Noy,et al.  Lower bounds on the number of crossing-free subgraphs of KN , 2000, Comput. Geom..

[24]  Marc Noy,et al.  Flipping Edges in Triangulations , 1999, Discret. Comput. Geom..

[25]  K. Appel,et al.  Every planar map is four colorable. Part I: Discharging , 1977 .

[26]  Csaba D. Tóth,et al.  Bounds on the maximum multiplicity of some common geometric graphs , 2011, STACS.

[27]  Ares Ribó Mor Realization and counting problems for planar structures , 2006 .

[28]  Raimund Seidel Note – On the Number of Triangulations of Planar Point Sets , 1998, Comb..

[29]  Gnter Rote,et al.  The number of spanning trees in a planar graph , 2005 .

[30]  Omer Giménez,et al.  The number of planar graphs and properties of random planar graphs , 2005 .

[31]  Heinrich Heesch,et al.  Untersuchungen zum Vierfarbenproblem , 1969 .

[32]  Micha Sharir,et al.  On degrees in random triangulations of point sets , 2010, SoCG '10.

[33]  Kevin Buchin,et al.  On the Number of Spanning Trees a Planar Graph Can Have , 2009, ESA.

[34]  Micha Sharir,et al.  On the number of crossing-free matchings, (cycles, and partitions) , 2006, SODA '06.