J un 2 01 9 CERN-TH-2019-087 , ZU-TH 30 / 19 Physical projectors for multi-leg helicity amplitudes
暂无分享,去创建一个
[1] Tiziano Peraro,et al. FiniteFlow: multivariate functional reconstruction using finite fields and dataflow graphs , 2019, Journal of High Energy Physics.
[2] T. Peraro,et al. Analytic Form of the Full Two-Loop Five-Gluon All-Plus Helicity Amplitude. , 2019, Physical review letters.
[3] Long-Bin Chen. A prescription for projectors to compute helicity amplitudes in D dimensions , 2019, The European Physical Journal C.
[4] B. Page,et al. Analytic form of the planar two-loop five-parton scattering amplitudes in QCD , 2019, Journal of High Energy Physics.
[5] T. Gehrmann,et al. The two-loop five-particle amplitude in N$$ \mathcal{N} $$ = 8 supergravity , 2019, Journal of High Energy Physics.
[6] T. Gehrmann,et al. Analytic Result for a Two-Loop Five-Particle Amplitude. , 2018, Physical review letters.
[7] B. Page,et al. Analytic Form of Planar Two-Loop Five-Gluon Scattering Amplitudes in QCD. , 2018, Physical review letters.
[8] H. Hartanto,et al. Analytic helicity amplitudes for two-loop five-gluon scattering: the single-minus case , 2018, Journal of High Energy Physics.
[9] P. Mastrolia,et al. Feynman integrals and intersection theory , 2018, Journal of High Energy Physics.
[10] H. Hartanto,et al. First Look at Two-Loop Five-Gluon Scattering in QCD. , 2017, Physical review letters.
[11] L. Tancredi,et al. Maximal cuts and differential equations for Feynman integrals. An application to the three-loop massive banana graph , 2017, 1704.05465.
[12] Yang Zhang,et al. Maximal cuts in arbitrary dimension , 2017, Journal of High Energy Physics.
[13] C. Papadopoulos,et al. Cuts of Feynman Integrals in Baikov representation , 2017, Journal of High Energy Physics.
[14] L. Tancredi,et al. On the maximal cut of Feynman integrals and the solution of their differential equations , 2016, 1610.08397.
[15] T. Peraro. Scattering amplitudes over finite fields and multivariate functional reconstruction , 2016, 1608.01902.
[16] S. Badger. Automating QCD amplitudes with on-shell methods , 2016, 1605.02172.
[17] R. Schabinger,et al. Computation of form factors in massless QCD with finite master integrals , 2015, 1510.06758.
[18] H. Ita. Two-loop integrand decomposition into master integrals and surface terms , 2015, 1510.05626.
[19] S. Badger,et al. A two-loop five-gluon helicity amplitude in QCD , 2013, 1310.1051.
[20] J. Henn. Multiloop integrals in dimensional regularization made simple. , 2013, Physical review letters.
[21] P. Mastrolia,et al. Scattering Amplitudes from Multivariate Polynomial Division , 2012, 1205.7087.
[22] Yang Zhang. Integrand-level reduction of loop amplitudes by computational algebraic geometry methods , 2012, Journal of High Energy Physics.
[23] S. Badger,et al. Hepta-cuts of two-loop scattering amplitudes , 2012, 1202.2019.
[24] P. Mastrolia,et al. On the integrand-reduction method for two-loop scattering amplitudes , 2011, 1107.6041.
[25] A. Hodges. Eliminating spurious poles from gauge-theoretic amplitudes , 2009, 0905.1473.
[26] Z. Kunszt,et al. Full one-loop amplitudes from tree amplitudes , 2008, 0801.2237.
[27] Z. Kunszt,et al. A numerical unitarity formalism for evaluating one-loop amplitudes , 2007, 0708.2398.
[28] R. Pittau,et al. Reducing full one-loop amplitudes to scalar integrals at the integrand level , 2006, hep-ph/0609007.
[29] F. Cachazo,et al. Generalized unitarity and one-loop amplitudes in N=4 super-Yang-Mills , 2004, hep-th/0412103.
[30] L. Dixon,et al. Supersymmetric regularization, two-loop QCD amplitudes, and coupling shifts , 2002, hep-ph/0202271.
[31] S. Laporta,et al. HIGH-PRECISION CALCULATION OF MULTILOOP FEYNMAN INTEGRALS BY DIFFERENCE EQUATIONS , 2000, hep-ph/0102033.
[32] T. Gehrmann,et al. Differential Equations for Two-Loop Four-Point Functions , 1999, hep-ph/9912329.
[33] E. Remiddi. Differential equations for Feynman graph amplitudes , 1997, Il Nuovo Cimento A.
[34] L. Dixon,et al. Fusing gauge theory tree amplitudes into loop amplitudes , 1994, hep-ph/9409265.
[35] L. Dixon,et al. One-loop n-point gauge theory amplitudes, unitarity and collinear limits , 1994, hep-ph/9403226.
[36] P. Nogueira. Automatic Feynman graph generation , 1993 .
[37] L. Dixon,et al. One-loop corrections to five-gluon amplitudes. , 1993, Physical review letters.
[38] A. Kotikov. NEW METHOD OF MASSIVE FEYNMAN DIAGRAMS CALCULATION , 1991 .
[39] W. Giele,et al. Recursive calculations for processes with n gluons , 1988 .
[40] M. Mangano,et al. Duality and Multi - Gluon Scattering , 1988 .
[41] F. Tkachov,et al. Integration by parts: The algorithm to calculate β-functions in 4 loops , 1981 .
[42] F. Tkachov. A theorem on analytical calculability of 4-loop renormalization group functions , 1981 .