Algorithms for Finding Optimal Flows in Dynamic Networks

This article presents an approach for solving some power systems problems by using optimal dynamic flow problems. The classical optimal flow problems on networks are extended and generalized for the cases of nonlinear cost functions on arcs, multicommodity flows, and time- and flow-dependent transactions on arcs of the network. All parameters of networks are assumed to be dependent on time. The algorithms for solving such kind of problems are developed by using special dynamic programming techniques based on the time-expanded network method together with classical optimization methods.

[1]  Gerhard J. Woeginger,et al.  Minimum Cost Dynamic Flows: The Series-Parallel Case , 1995, IPCO.

[2]  Jay E. Aronson,et al.  A survey of dynamic network flows , 1989 .

[3]  George L. Nemhauser,et al.  A Dynamic Network Flow Problem with Uncertain Arc Capacities: Formulation and Problem Structure , 2000, Oper. Res..

[4]  J. Contreras,et al.  Simulation and Evaluation of Optimization Problem Solutions in Distributed Energy Management Systems , 2001, IEEE Power Engineering Review.

[5]  Lisa Fleischer,et al.  Faster Algorithms for the Quickest Transshipment Problem , 2001, SIAM J. Optim..

[6]  Christoph Weber,et al.  Uncertainty in the Electric Power Industry - Methods and Models for Decision Support , 2005, International series in operations research and management science.

[7]  Lisa Fleischer,et al.  Universally Maximum Flow with Piecewise-Constant Capacities , 1999, IPCO.

[8]  Roger Dugan Distribution and wind (review of Distribution System Modeling and Analysis by W. H. Kersting; 2006) [book review] , 2008, IEEE Power and Energy Magazine.

[9]  Warren B. Powell,et al.  Stochastic and dynamic networks and routing , 1995 .

[10]  William Kersting,et al.  Distribution System Modeling and Analysis , 2001, Electric Power Generation, Transmission, and Distribution: The Electric Power Engineering Handbook.

[11]  Andrew V. Goldberg,et al.  Solving minimum-cost flow problems by successive approximation , 1987, STOC.

[12]  Dmitrii Lozovanu,et al.  Optimal Dynamic Multicommodity Flows in Networks , 2006, Electron. Notes Discret. Math..

[13]  Allen J. Wood,et al.  Power Generation, Operation, and Control , 1984 .

[14]  Dmitrii Lozovanu,et al.  The minimum cost multicommodity flow problem in dynamic networks and an algorithm for its solving , 2005, Comput. Sci. J. Moldova.

[15]  Ravindra K. Ahuja,et al.  Network Flows , 2011 .

[16]  Jordi Castro,et al.  A Specialized Interior-Point Algorithm for Multicommodity Network Flows , 1999, SIAM J. Optim..

[17]  Panos M. Pardalos,et al.  Network Optimization , 1997 .

[18]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[19]  Anthony J. Pansini,et al.  Guide to Electrical Power Distribution Systems , 1992 .

[20]  Chak-Kuen Wong,et al.  Time-varying minimum cost flow problems , 2001, Eur. J. Oper. Res..

[21]  Deguang Cui,et al.  Dynamic network flow model for short-term air traffic flow management , 2004, IEEE Trans. Syst. Man Cybern. Part A.

[22]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[23]  Arjang A. Assad,et al.  Multicommodity network flows - A survey , 1978, Networks.

[24]  Andrew V. Goldberg,et al.  Finding minimum-cost circulations by canceling negative cycles , 1989, JACM.

[25]  Aravind Srinivasan,et al.  Combinatorial Problems Arising in Deregulated Electrical Power Industry: Survey and Future Directions , 2000 .

[26]  David L. Jensen,et al.  On the computational behavior of a polynomial-time network flow algorithm , 1992, Math. Program..

[27]  P. O. Lindberg,et al.  Network Methods for Head-dependent Hydro Power Scheduling , 1997 .

[28]  J. Castro,et al.  An implementation of linear and nonlinear multicommodity network flows , 1996 .

[29]  Ross Baldick,et al.  Coarse-grained distributed optimal power flow , 1997 .

[30]  Gerhard J. Woeginger,et al.  One, two, three, many, or: complexity aspects of dynamic network flows with dedicated arcs , 1998, Oper. Res. Lett..

[31]  Dmitrii Lozovanu,et al.  Minimum Cost Multicommodity Flows in Dynamic Networks and Algorithms for their Finding , 2007 .

[32]  Éva Tardos,et al.  “The quickest transshipment problem” , 1995, SODA '95.

[33]  A. Renaud,et al.  Daily generation scheduling optimization with transmission constraints: a new class of algorithms , 1992 .

[34]  H Lee Willis,et al.  Power distribution planning reference book , 2000 .

[35]  D. R. Fulkerson,et al.  Constructing Maximal Dynamic Flows from Static Flows , 1958 .

[36]  Lisa Fleischer,et al.  Approximating Fractional Multicommodity Flow Independent of the Number of Commodities , 2000, SIAM J. Discret. Math..

[37]  Malachy Carey,et al.  An approach to modelling time-varying flows on congested networks , 2000 .

[38]  S. Vajda,et al.  Integer Programming and Network Flows , 1970 .

[39]  Panos M. Pardalos,et al.  Global search algorithms for minimum concave-cost network flow problems , 1991, J. Glob. Optim..

[40]  François Maréchal,et al.  Design and optimization of district energy systems , 2007 .

[41]  Martin Skutella,et al.  The Quickest Multicommodity Flow Problem , 2002, IPCO.

[42]  H Lee Willis,et al.  Aging Power Delivery Infrastructures , 2000 .

[43]  Jordi Castro,et al.  Solving Difficult Multicommodity Problems with a Specialized Interior-Point Algorithm , 2003, Ann. Oper. Res..

[44]  P. M. Pardalos,et al.  Approximation and Complexity in Numerical Optimization: Continuous And Discrete Problems , 2006 .

[45]  Richard D. McBride,et al.  Progress Made in Solving the Multicommodity Flow Problem , 1998, SIAM J. Optim..