Raman scattering from very thin Si layers of Si/SiO2 superlattices: Experimental evidence of structural modification in the 0.8–3.5 nm thickness region

Raman study of very thin (⩽3.5 nm) Si layers constituting Si/SiO2 superlattices and grown by molecular beam epitaxy is described. The Raman spectra show systematic dependence on thickness of the Si layers, which highlights the variety of disordered microstructures in the Si/SiO2 superlattices. A clear change in the vibrational properties is found to occur in the 0.8–3.5 nm thickness region. In particular, the Raman spectra are typical for amorphous silicon for the thicker layers, and the characteristic phonon band disappears for the thinner layers, presumably representing another form of Si coordination with a small Raman scattering cross section. In addition, absorption of the material changes essentially with the Si-layer thickness. Photoluminescence is detected from the Si/SiO2 superlattices, the superlattices with 1.2 and 1.8 nm Si layers being the most efficient emitters among our samples, and the photoluminescence is blueshifted with the decrease of the Si-layer thickness. The Raman spectra show no ...

[1]  T. Kuusela,et al.  Electroluminescent SiO2/Si superlattices prepared by low pressure chemical vapour deposition , 1998 .

[2]  Influence of wavelength on the Raman line shape in porous silicon , 1998 .

[3]  T. Hattori,et al.  Structural transition layer at SiO 2 / S i interfaces , 1999 .

[4]  S. Alterovitz,et al.  Properties and Characterization of Amorphous Carbon Films , 1990 .

[5]  M. Broyer,et al.  Structural, vibrational, and optical properties of silicon cluster assembled films , 1998 .

[6]  Stefano de Gironcoli,et al.  OPTICAL PHONON PROBES OF THE LATERAL SCALE OF INTERFACE ROUGHNESS - A THEORETICAL INVESTIGATION , 1994 .

[7]  Beeman,et al.  Dynamics of tetrahedral networks: Amorphous Si and Ge. , 1988, Physical review. B, Condensed matter.

[8]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[9]  M. Räsänen,et al.  INFLUENCE OF RADIATION INTERFERENCE ON THE SHAPE OF RAMAN SPECTRA FOR AMORPHOUS HYDROGEN-FREE DIAMONDLIKE CARBON FILMS , 1996 .

[10]  J. Bean,et al.  EFFECT OF HYDROSTATIC PRESSURE ON THE RAMAN SPECTRUM OF GENSIM MULTIPLE QUANTUM WELLS WITH N 4 AND M7 , 1998 .

[11]  D. J. Lockwood,et al.  Fabrication of Nanocrystalline Silicon Superlattices by Controlled Thermal Recrystallization , 1998 .

[12]  L. Pietronero,et al.  Vibrational properties of Al 2 O 3 films on gold, aluminum, and silicon , 1984 .

[13]  W. Lang,et al.  Resonant Raman scattering and photoluminescence studies of porous silicon membranes , 1996 .

[14]  J. Stencel Raman spectroscopy for catalysis , 1990 .

[15]  Cuomo,et al.  Raman scattering of laser-deposited amorphous carbon. , 1993, Physical review. B, Condensed matter.

[16]  W. Andreoni,et al.  Effect of size and geometry on the electronic properties of small hydrogenated silicon clusters , 1995 .

[17]  Wang,et al.  Structure, dynamics, and electronic properties of diamondlike amorphous carbon. , 1993, Physical review letters.

[18]  Stefano de Gironcoli,et al.  In-plane Raman scattering of (001)-Si/Ge superlattices: Theory and experiment. , 1994, Physical review. B, Condensed matter.

[19]  M. Tischler,et al.  Raman scattering from H or O terminated porous Si , 1992 .

[20]  Zheng-Hong Lu,et al.  Quantum confined luminescence in Si/SiO2 superlattices. , 1996 .

[21]  M. Broyer,et al.  Nanostructured silicon films obtained by neutral cluster depositions , 1997 .

[22]  M. Räsänen,et al.  Raman-based measurements of optical properties of thin solid films: application to amorphous diamond , 1998 .

[23]  G. Abstreiter,et al.  Strain and confinement effects on optical phonons in short period (100) Si/Ge superlattices , 1990 .

[24]  Visible light emission from MBD-grown superlattices , 1997 .

[25]  D. J. Lockwood,et al.  Interpretation of Raman spectra of Ge/Si ultrathin superlattices. , 1990, Physical review. B, Condensed matter.

[26]  Reijo Lappalainen,et al.  On correlation between the shape of Raman spectra and short-range order structure of hydrogen-free amorphous carbon films , 1997 .

[27]  P. Koidl,et al.  Raman scattering from extremely thin hard amorphous carbon films , 1987 .

[28]  D. J. Lockwood,et al.  Quantum confinement and light emission in SiO2/Si superlattices , 1995, Nature.

[29]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[30]  Stefano de Gironcoli,et al.  Interface mode in Si/Ge superlattices: Theory and experiments. , 1993, Physical review. B, Condensed matter.

[31]  David J. Lockwood,et al.  Photoluminescence in amorphous Si/SiO2 superlattices fabricated by magnetron sputtering , 1996 .

[32]  L. Canham Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers , 1990 .

[33]  Henryk Temkin,et al.  Raman analysis of light‐emitting porous silicon , 1992 .

[34]  Juha Sinkkonen,et al.  Visible luminescence from Si/SiO2 superlattices , 1997 .

[35]  Hongen Shen,et al.  Correlation of Raman and photoluminescence spectra of porous silicon , 1992 .

[36]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[37]  J. Robertson,et al.  DIRECT OBSERVATION OF SP3 BONDING IN TETRAHEDRAL AMORPHOUS CARBON USING ULTRAVIOLET RAMAN SPECTROSCOPY , 1997 .