Epidermal growth factor stimulates translocation of the class II phosphoinositide 3-kinase PI3K-C2 (cid:12) to the nucleus

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés. Epidermal growth factor stimulates translocation of the class II phosphoinositide 3-kinase PI3K-C2β to the nucleus Hrvoje Banfic, Dora Visnjic, Nikica Mise, Sanjeevi Balakrishnan, Simona Deplano, Yuri E. Korchev, Jan Domin

[1]  Nuclear Translocation , 2020, Definitions.

[2]  C. Eng,et al.  The nuclear affairs of PTEN , 2008, Journal of Cell Science.

[3]  M. Falasca,et al.  Role of class II phosphoinositide 3-kinase in cell signalling. , 2007, Biochemical Society transactions.

[4]  J. Downward,et al.  Phosphoinositide 3-Kinase C2beta regulates cytoskeletal organization and cell migration via Rac-dependent mechanisms. , 2006, Molecular biology of the cell.

[5]  Ji Luo,et al.  The evolution of phosphatidylinositol 3-kinases as regulators of growth and metabolism , 2006, Nature Reviews Genetics.

[6]  H. Bellamy,et al.  Crystal Structure of the C2 Domain of Class II Phosphatidylinositide 3-Kinase C2α* , 2005, Journal of Biological Chemistry.

[7]  H. Banfić,et al.  Presence of different phospholipase C isoforms in the nucleus and their activation during compensatory liver growth , 2004, FEBS letters.

[8]  A. Martelli,et al.  The nuclear phosphoinositide 3-kinase/AKT pathway: a new second messenger system. , 2002, Biochimica et biophysica acta.

[9]  M. Thelen,et al.  Phosphatidylinositol 3-Kinase C2α Contains a Nuclear Localization Sequence and Associates with Nuclear Speckles* , 2001, The Journal of Biological Chemistry.

[10]  M. Wheeler,et al.  Recruitment of the Class II Phosphoinositide 3-Kinase C2β to the Epidermal Growth Factor Receptor: Role of Grb2 , 2001, Molecular and Cellular Biology.

[11]  S. Volinia,et al.  Presence and Activation of Nuclear Phosphoinositide 3-Kinase C2β during Compensatory Liver Growth* , 2001, The Journal of Biological Chemistry.

[12]  I. Gaidarov,et al.  The class II phosphoinositide 3-kinase C2alpha is activated by clathrin and regulates clathrin-mediated membrane trafficking. , 2001, Molecular cell.

[13]  M. Zvelebil,et al.  Class II Phosphoinositide 3-Kinases Are Downstream Targets of Activated Polypeptide Growth Factor Receptors , 2000, Molecular and Cellular Biology.

[14]  M. Waterfield,et al.  The Class II Phosphoinositide 3-Kinase PI3K-C2α Is Concentrated in the Trans-Golgi Network and Present in Clathrin-coated Vesicles* , 2000, The Journal of Biological Chemistry.

[15]  A. Martelli,et al.  Nuclear phospholipase C: a novel aspect of phosphoinositide signalling. , 1999, Anticancer Research.

[16]  Toshinori Yoshida,et al.  Evidence That a Phosphatidylinositol 3,4,5-Trisphosphate-binding Protein Can Function in Nucleus* , 1999, The Journal of Biological Chemistry.

[17]  M. Zvelebil,et al.  Human Phosphoinositide 3-Kinase C2β, the Role of Calcium and the C2 Domain in Enzyme Activity* , 1998, The Journal of Biological Chemistry.

[18]  M. Waterfield,et al.  The CC Chemokine Monocyte Chemotactic Peptide-1 Activates both the Class I p85/p110 Phosphatidylinositol 3-Kinase and the Class II PI3K-C2α* , 1998, The Journal of Biological Chemistry.

[19]  S. Volinia,et al.  A Type II Phosphoinositide 3-Kinase Is Stimulated via Activated Integrin in Platelets , 1998, The Journal of Biological Chemistry.

[20]  K. Goto,et al.  A Novel Class II Phosphoinositide 3-Kinase Predominantly Expressed in the Liver and Its Enhanced Expression during Liver Regeneration* , 1998, The Journal of Biological Chemistry.

[21]  M. Waterfield,et al.  Using structure to define the function of phosphoinositide 3‐kinase family members , 1997, FEBS letters.

[22]  J. Shipley,et al.  Identification and cDNA cloning of a novel mammalian C2 domain-containing phosphoinositide 3-kinase, HsC2-PI3K. , 1997, Biochemical and biophysical research communications.

[23]  M. Waterfield,et al.  Binding to the Platelet-derived Growth Factor Receptor Transiently Activates the p85α-p110α Phosphoinositide 3-Kinase Complex in Vivo* , 1996, The Journal of Biological Chemistry.

[24]  S. Capitani,et al.  Nuclear translocation of phosphatidylinositol 3-kinase in rat pheochromocytoma PC 12 cells after treatment with nerve growth factor. , 1994, Cellular and molecular biology.

[25]  N. Divecha,et al.  Inositides and the nucleus and inositides in the nucleus , 1993, Cell.

[26]  L. Cocco,et al.  Synthesis of polyphosphoinositides in nuclei of Friend cells. Evidence for polyphosphoinositide metabolism inside the nucleus which changes with cell differentiation. , 1987, The Biochemical journal.

[27]  C. Smith,et al.  Phosphorylation of rat liver nuclear envelopes. I. Characterization of in vitro protein phosphorylation. , 1983, The Journal of biological chemistry.

[28]  Melchor Fernández Almagro,et al.  Structural and Membrane Binding Analysis of the PX Domain of Phosphoinositide 3-Kinase-C2α * , 2006 .

[29]  C. Smith,et al.  Phosphorylation of rat liver nuclear envelopes. II. Characterization of in vitro lipid phosphorylation. , 1983, Journal of Biological Chemistry.