Differential dependencies: Reasoning and discovery

The importance of difference semantics (e.g., “similar” or “dissimilar”) has been recently recognized for declaring dependencies among various types of data, such as numerical values or text values. We propose a novel form of Differential Dependencies (dds), which specifies constraints on difference, called differential functions, instead of identification functions in traditional dependency notations like functional dependencies. Informally, a differential dependency states that if two tuples have distances on attributes X agreeing with a certain differential function, then their distances on attributes Y should also agree with the corresponding differential function on Y. For example, [date(≤ 7)]→[price(< 100)] states that the price difference of any two days within a week length should be no greater than 100 dollars. Such differential dependencies are useful in various applications, for example, violation detection, data partition, query optimization, record linkage, etc. In this article, we first address several theoretical issues of differential dependencies, including formal definitions of dds and differential keys, subsumption order relation of differential functions, implication of dds, closure of a differential function, a sound and complete inference system, and minimal cover for dds. Then, we investigate a practical problem, that is, how to discover dds and differential keys from a given dataset. Due to the intrinsic hardness, we develop several pruning methods to improve the discovery efficiency in practice. Finally, through an extensive experimental evaluation on real datasets, we demonstrate the discovery performance and the effectiveness of dds in several real applications.

[1]  Shuai Ma,et al.  Increasing the Expressivity of Conditional Functional Dependencies without Extra Complexity , 2008, 2008 IEEE 24th International Conference on Data Engineering.

[2]  Jie Liu,et al.  Propagating functional dependencies with conditions , 2008, VLDB 2008.

[3]  Avishek Saha,et al.  Sequential Dependencies , 2009, Proc. VLDB Endow..

[4]  Laks V. S. Lakshmanan,et al.  Discovering Conditional Functional Dependencies , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[5]  Jef Wijsen,et al.  Trends in Databases: Reasoning and Mining , 2001, IEEE Trans. Knowl. Data Eng..

[6]  Yehoshua Sagiv,et al.  Semantic query optimization in Datalog programs (extended abstract) , 1995, ILPS Workshop: Constraints and Databases.

[7]  Surajit Chaudhuri,et al.  Leveraging aggregate constraints for deduplication , 2007, SIGMOD '07.

[8]  Heikki Mannila,et al.  Design of Relational Databases , 1992 .

[9]  David Maier,et al.  From databases to dataspaces: a new abstraction for information management , 2005, SGMD.

[10]  D. Bitton,et al.  A feasibility and performance study of dependency inference (database design) , 1989, [1989] Proceedings. Fifth International Conference on Data Engineering.

[11]  Jianzhong Li,et al.  Reasoning about Record Matching Rules , 2009, Proc. VLDB Endow..

[12]  Stefan Kramer,et al.  Efficient Search for Strong Partial Determinations , 1996, KDD.

[13]  Renée J. Miller,et al.  Discovering data quality rules , 2008, Proc. VLDB Endow..

[14]  Jan Chomicki,et al.  Consistent query answers in inconsistent databases , 1999, PODS '99.

[15]  Shuai Ma,et al.  Improving Data Quality: Consistency and Accuracy , 2007, VLDB.

[16]  Heikki Mannila,et al.  Algorithms for Inferring Functional Dependencies from Relations , 1994, Data Knowl. Eng..

[17]  Leonidas J. Guibas,et al.  Fractional cascading: I. A data structuring technique , 1986, Algorithmica.

[18]  Salvatore J. Stolfo,et al.  The merge/purge problem for large databases , 1995, SIGMOD '95.

[19]  Heikki Mannila,et al.  Dependency Inference , 1987, VLDB.

[20]  John Grant,et al.  Logic-based approach to semantic query optimization , 1990, TODS.

[21]  Bei Yu,et al.  On generating near-optimal tableaux for conditional functional dependencies , 2008, Proc. VLDB Endow..

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Wilfred Ng,et al.  Ordered Functional Dependencies in Relational Databases , 1999, Inf. Syst..

[24]  Leonidas J. Guibas,et al.  Fractional cascading: II. Applications , 1986, Algorithmica.

[25]  Mark Levene,et al.  A guided tour of relational databases and beyond , 1999 .

[26]  Alon Y. Halevy,et al.  Semantic query optimization in Datalog programs (extended abstract) , 1995, PODS '95.

[27]  Peter A. Flach,et al.  Database Dependency Discovery: A Machine Learning Approach , 1999, AI Commun..

[28]  Hannu Toivonen,et al.  Efficient discovery of functional and approximate dependencies using partitions , 1998, Proceedings 14th International Conference on Data Engineering.

[29]  Gonzalo Navarro,et al.  A guided tour to approximate string matching , 2001, CSUR.

[30]  Jef Wijsen,et al.  Reasoning about Qualitative Trends in Databases , 1998, Inf. Syst..

[31]  Stanley B. Zdonik,et al.  Correlation Maps: A Compressed Access Method for Exploiting Soft Functional Dependencies , 2009, Proc. VLDB Endow..

[32]  Hannu Toivonen,et al.  TANE: An Efficient Algorithm for Discovering Functional and Approximate Dependencies , 1999, Comput. J..

[33]  Heikki Mannila,et al.  Approximate Inference of Functional Dependencies from Relations , 1995, Theor. Comput. Sci..

[34]  Gerhard Weikum,et al.  ACM Transactions on Database Systems , 2005 .

[35]  Jan Chomicki,et al.  On the Computational Complexity of Minimal-Change Integrity Maintenance in Relational Databases , 2005, Inconsistency Tolerance.

[36]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[37]  Paul Brown,et al.  CORDS: automatic discovery of correlations and soft functional dependencies , 2004, SIGMOD '04.

[38]  Jeffrey C. Schlimmer,et al.  Efficiently Inducing Determinations: A Complete and Systematic Search Algorithm that Uses Optimal Pruning , 1993, ICML.

[39]  Ahmed K. Elmagarmid,et al.  Duplicate Record Detection: A Survey , 2007, IEEE Transactions on Knowledge and Data Engineering.

[40]  Richard Hull,et al.  Order Dependency in the Relational Model , 1983, Theor. Comput. Sci..

[41]  Panagiotis G. Ipeirotis,et al.  Duplicate Record Detection: A Survey , 2007 .

[42]  Richard Hull,et al.  Sort sets in the relational model , 1983, PODS '83.

[43]  Edward L. Robertson,et al.  FastFDs: A Heuristic-Driven, Depth-First Algorithm for Mining Functional Dependencies from Relation Instances - Extended Abstract , 2001, DaWaK.

[44]  Wenfei Fan,et al.  Conditional functional dependencies for capturing data inconsistencies , 2008, TODS.

[45]  Heikki Mannila,et al.  Practical algorithms for finding prime attributes and testing normal forms , 1989, PODS '89.

[46]  Avishek Saha,et al.  Metric Functional Dependencies , 2009, 2009 IEEE 25th International Conference on Data Engineering.

[47]  Siu Hung Ng,et al.  An extension of the relational data model to incorporate ordered domains , 2001, TODS.

[48]  W. W. Armstrong,et al.  Dependency Structures of Data Base Relationships , 1974, IFIP Congress.

[49]  S. Muthukrishnan,et al.  Checks and Balances , 2003 .

[50]  Wenfei Fan,et al.  Dependencies revisited for improving data quality , 2008, PODS.

[51]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[52]  Wenfei Fan,et al.  Conditional Functional Dependencies for Data Cleaning , 2007, 2007 IEEE 23rd International Conference on Data Engineering.

[53]  Luis Gravano,et al.  Using q-grams in a DBMS for Approximate String Processing , 2001, IEEE Data Eng. Bull..

[54]  Richard Hull,et al.  Applying approximate order dependency to reduce indexing space , 1982, SIGMOD '82.

[55]  Richard M. Karp,et al.  Reducibility Among Combinatorial Problems , 1972, 50 Years of Integer Programming.

[56]  Mark de Berg,et al.  Computational geometry: algorithms and applications , 1997 .

[57]  Shuai Ma,et al.  Extending Dependencies with Conditions , 2007, VLDB.

[58]  Robert E. Tarjan,et al.  A Linear-Time Algorithm for Testing the Truth of Certain Quantified Boolean Formulas , 1979, Inf. Process. Lett..