Complex blood flow patterns in an idealized left ventricle: A numerical study.

In this paper, we study the blood flow dynamics in a three-dimensional (3D) idealized left ventricle of the human heart whose deformation is driven by muscle contraction and relaxation in coordination with the action of the mitral and aortic valves. We propose a simplified but realistic mathematical treatment of the valves function based on mixed time-varying boundary conditions (BCs) for the Navier-Stokes equations modeling the flow. These switchings in time BCs, from natural to essential and vice versa, model either the open or the closed configurations of the valves. At the numerical level, these BCs are enforced by means of the extended Nitsche's method (Tagliabue et al., Int. J. Numer. Methods Fluids, 2017). Numerical results for the 3D idealized left ventricle obtained by means of Isogeometric Analysis are presented, discussed in terms of both instantaneous and phase-averaged quantities of interest and validated against those available in the literature, both experimental and computational. The complex blood flow patterns are analysed to describe the characteristic fluid properties, to show the transitional nature of the flow, and to highlight its main features inside the left ventricle. The sensitivity of the intraventricular flow patterns to the mitral valve properties is also investigated.

[1]  Franck Nicoud,et al.  Image-based large-eddy simulation in a realistic left heart , 2014 .

[2]  Jean Hertzberg,et al.  Development and validation of echo PIV , 2004 .

[3]  Rolf Stenberg,et al.  Nitsche's method for general boundary conditions , 2009, Math. Comput..

[4]  H Reul,et al.  Fluid mechanics of the natural mitral valve. , 1981, Journal of biomechanics.

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Einar Heiberg,et al.  Left ventricular fluid kinetic energy time curves in heart failure from cardiovascular magnetic resonance 4D flow data , 2015, Journal of Cardiovascular Magnetic Resonance.

[7]  N. Stergiopulos,et al.  Validation of a one-dimensional model of the systemic arterial tree. , 2009, American journal of physiology. Heart and circulatory physiology.

[8]  Toshiaki Hisada,et al.  Multiphysics simulation of left ventricular filling dynamics using fluid-structure interaction finite element method. , 2004, Biophysical journal.

[9]  Arash Kheradvar,et al.  High-speed particle image velocimetry to assess cardiac fluid dynamics in vitro: From performance to validation , 2012 .

[10]  C. Peskin Flow patterns around heart valves: A numerical method , 1972 .

[11]  A. Marsden,et al.  A comparison of outlet boundary treatments for prevention of backflow divergence with relevance to blood flow simulations , 2011 .

[12]  Victor M. Calo,et al.  Weak Dirichlet Boundary Conditions for Wall-Bounded Turbulent Flows , 2007 .

[13]  Christian H. Whiting,et al.  STABILIZED FINITE ELEMENT METHODS FOR FLUID DYNAMICS USING A HIERARCHICAL BASIS , 1999 .

[14]  Gianni Pedrizzetti,et al.  Three-dimensional filling flow into a model left ventricle , 2005, Journal of Fluid Mechanics.

[15]  A P Yoganathan,et al.  Left ventricular blood flow patterns in normal subjects: a quantitative analysis by three-dimensional magnetic resonance velocity mapping. , 1995, Journal of the American College of Cardiology.

[16]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[17]  Jiun-Jr Wang,et al.  Expanding application of the Wiggers diagram to teach cardiovascular physiology. , 2014, Advances in physiology education.

[18]  T. Böhlke,et al.  Partitioned Fluid–Solid Coupling for Cardiovascular Blood Flow , 2010, Annals of Biomedical Engineering.

[19]  Arif Masud,et al.  A multiscale stabilized ALE formulation for incompressible flows with moving boundaries , 2010 .

[20]  G. Pedrizzetti,et al.  Emerging trends in CV flow visualization. , 2012, JACC. Cardiovascular imaging.

[21]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[22]  Yuri Bazilevs,et al.  Wind turbine aerodynamics using ALE–VMS: validation and the role of weakly enforced boundary conditions , 2012 .

[23]  A P Yoganathan,et al.  Three-dimensional computational model of left heart diastolic function with fluid-structure interaction. , 2000, Journal of biomechanical engineering.

[24]  Alfonso Caiazzo,et al.  A tangential regularization method for backflow stabilization in hemodynamics , 2014, J. Comput. Phys..

[25]  A. Quarteroni Numerical Models for Differential Problems , 2009 .

[26]  Gianni Pedrizzetti,et al.  Vortex dynamics in a model left ventricle during filling , 2002 .

[27]  L. Formaggia,et al.  Stability analysis of second-order time accurate schemes for ALE-FEM , 2004 .

[28]  Volker Gravemeier,et al.  A novel formulation for Neumann inflow boundary conditions in biomechanics , 2012, International journal for numerical methods in biomedical engineering.

[29]  Alfio Quarteroni,et al.  Fluid dynamics of an idealized left ventricle: the extended Nitsche's method for the treatment of heart valves as mixed time varying boundary conditions , 2017 .

[30]  J B Seward,et al.  Echocardiographic assessment of left ventricular remodeling: are left ventricular diameters suitable tools? , 1997, Journal of the American College of Cardiology.

[31]  Thomas J. R. Hughes,et al.  Weak imposition of Dirichlet boundary conditions in fluid mechanics , 2007 .

[32]  Yuri Bazilevs,et al.  Space–Time and ALE-VMS Techniques for Patient-Specific Cardiovascular Fluid–Structure Interaction Modeling , 2012 .

[33]  Giorgio Galanti,et al.  Comparative numerical study on left ventricular fluid dynamics after dilated cardiomyopathy. , 2013, Journal of biomechanics.

[34]  P. Moin,et al.  Eddies, streams, and convergence zones in turbulent flows , 1988 .

[35]  Alfio Quarteroni,et al.  Geometric multiscale modeling of the cardiovascular system, between theory and practice , 2016 .

[36]  P. Verdonck,et al.  Computer simulation of intraventricular flow and pressure gradients during diastole. , 2000, Journal of biomechanical engineering.

[37]  B J Bellhouse,et al.  Fluid mechanics of a model mitral valve and left ventricle. , 1972, Cardiovascular research.

[38]  Fabio Nobile,et al.  A Stability Analysis for the Arbitrary Lagrangian Eulerian Formulation with Finite Elements , 1999 .

[39]  Gianni Pedrizzetti,et al.  Fluid dynamics of the left ventricular filling in dilated cardiomyopathy. , 2002, Journal of biomechanics.

[40]  Thomas J. R. Hughes,et al.  Patient-specific isogeometric fluid–structure interaction analysis of thoracic aortic blood flow due to implantation of the Jarvik 2000 left ventricular assist device , 2009 .

[41]  C. Peskin,et al.  Heart Simulation by an Immersed Boundary Method with Formal Second-order Accuracy and Reduced Numerical Viscosity , 2001 .

[42]  Giuseppe Savaré,et al.  Parabolic problems with mixed variable lateral conditions: An abstract approach , 1997 .

[43]  Jung Hee Seo,et al.  Computational modeling and analysis of intracardiac flows in simple models of the left ventricle , 2012 .

[44]  Gustavo C. Buscaglia,et al.  Arbitrary Lagrangian-Eulerian (ALE)-Based Finite Element Methods for Rigid Solids Immersed in Fluids , 2016 .

[45]  J. Nitsche Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind , 1971 .

[46]  William Stewart,et al.  Recommendations for chamber quantification. , 2006, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[47]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[48]  Yuri Bazilevs,et al.  An immersogeometric variational framework for fluid-structure interaction: application to bioprosthetic heart valves. , 2015, Computer methods in applied mechanics and engineering.

[49]  Rolf Rannacher,et al.  ARTIFICIAL BOUNDARIES AND FLUX AND PRESSURE CONDITIONS FOR THE INCOMPRESSIBLE NAVIER–STOKES EQUATIONS , 1996 .

[50]  Gianni Pedrizzetti,et al.  Characterization and quantification of vortex flow in the human left ventricle by contrast echocardiography using vector particle image velocimetry. , 2008, JACC. Cardiovascular imaging.

[51]  Liang Zhong,et al.  Fluid-dynamics modelling of the human left ventricle with dynamic mesh for normal and myocardial infarction: Preliminary study , 2012, Comput. Biol. Medicine.

[52]  Thomas J. R. Hughes,et al.  Isogeometric Analysis for Topology Optimization with a Phase Field Model , 2012 .

[53]  C. Peskin Numerical analysis of blood flow in the heart , 1977 .

[54]  Matteo Astorino,et al.  A robust and efficient valve model based on resistive immersed surfaces , 2012, International journal for numerical methods in biomedical engineering.

[55]  Alfio Quarteroni,et al.  Integrated Heart—Coupling multiscale and multiphysics models for the simulation of the cardiac function , 2017 .

[56]  A. Quarteroni,et al.  Nitsche"s method for parabolic Partial Differential Equations with mixed time varying boundary conditions , 2016 .

[57]  G. Hulbert,et al.  A generalized-α method for integrating the filtered Navier–Stokes equations with a stabilized finite element method , 2000 .

[58]  T. Hughes,et al.  Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows , 2007 .

[59]  Alfio Quarteroni,et al.  Numerical modeling of heart valves using resistive Eulerian surfaces , 2016, International journal for numerical methods in biomedical engineering.

[60]  M. Yacoub,et al.  Asymmetric redirection of flow through the heart , 2000, Nature.

[61]  C. Peskin,et al.  A three-dimensional computational method for blood flow in the heart. 1. Immersed elastic fibers in a viscous incompressible fluid , 1989 .

[62]  T. Hughes,et al.  ISOGEOMETRIC ANALYSIS: APPROXIMATION, STABILITY AND ERROR ESTIMATES FOR h-REFINED MESHES , 2006 .

[63]  L. Shampine,et al.  A 3(2) pair of Runge - Kutta formulas , 1989 .

[64]  T. Hughes,et al.  Isogeometric fluid-structure interaction: theory, algorithms, and computations , 2008 .

[65]  Jintai Chung,et al.  A Time Integration Algorithm for Structural Dynamics With Improved Numerical Dissipation: The Generalized-α Method , 1993 .

[66]  H. Torp,et al.  Velocity profiles in mitral blood flow based on three-dimensional freehand colour flow imaging acquired at high frame rate. , 2000, European journal of echocardiography : the journal of the Working Group on Echocardiography of the European Society of Cardiology.

[67]  A P Yoganathan,et al.  Computational modeling of left heart diastolic function: examination of ventricular dysfunction. , 2000, Journal of biomechanical engineering.

[68]  C. Peskin,et al.  Modelling cardiac fluid dynamics and diastolic function , 2001, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[69]  Luca Dedè,et al.  Semi-implicit BDF time discretization of the Navier–Stokes equations with VMS-LES modeling in a High Performance Computing framework , 2015 .

[70]  Gianni Pedrizzetti,et al.  Intraventricular vortex flow changes in the infarcted left ventricle: numerical results in an idealised 3D shape , 2011, Computer methods in biomechanics and biomedical engineering.

[71]  S. Giuliani,et al.  Lagrangian and Eulerian Finite Element Techniques for Transient Fluid-Structure Interaction Problems , 1977 .

[72]  Anna Tagliabue,et al.  Isogeometric Analysis for Reduced Fluid-Structure Interaction Models in Haemodynamic Applications , 2012 .

[73]  Charles A. Taylor,et al.  Augmented Lagrangian method for constraining the shape of velocity profiles at outlet boundaries for three-dimensional finite element simulations of blood flow , 2009 .

[74]  Thomas J. R. Hughes,et al.  Fluid–structure interaction analysis of bioprosthetic heart valves: significance of arterial wall deformation , 2014, Computational Mechanics.

[75]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[76]  Alfio Quarteroni,et al.  A patient-specific aortic valve model based on moving resistive immersed implicit surfaces , 2017, Biomechanics and Modeling in Mechanobiology.

[77]  G. Pedrizzetti,et al.  Combined experimental and numerical analysis of the flow structure into the left ventricle. , 2007, Journal of biomechanics.

[78]  H. Howie Huang,et al.  Computational modeling of cardiac hemodynamics: Current status and future outlook , 2016, J. Comput. Phys..

[79]  Christian Vergara,et al.  Nitsche’s Method for Defective Boundary Value Problems in Incompressibile Fluid-dynamics , 2011, J. Sci. Comput..

[80]  Alfonso Caiazzo,et al.  A Stokes-residual backflow stabilization method applied to physiological flows , 2016, J. Comput. Phys..

[81]  Michel Fortin,et al.  Mixed and Hybrid Finite Element Methods , 2011, Springer Series in Computational Mathematics.