Two-body zeroth order hamiltonians in multireference perturbation theory: The APSG reference state

A special version of multi-reference perturbation theory is investigated which differs from standard ones by using a zeroth order Hamiltonian that contains two-electron terms explicitly. The method is applicable to reference states that can be written as an antisymmetrized product of two or more electron functions. In that case the zeroth order Hamiltonian has a well defined physical meaning and the matrix elements that come about can be evaluated in an efficient manner. We implemented the theory for the antisymmetrized product of strongly orthogonal geminals wave function and, as a special case, for the generalized valence bond. Illustrative calculations on sample molecules show the reliability of the approach, as well as a significant improvement in many cases compared to MRPT versions based on one-body zeroth order Hamiltonians.

[1]  Kimihiko Hirao,et al.  Multireference Møller—Plesset perturbation theory for high-spin open-shell systems , 1992 .

[2]  Björn O. Roos,et al.  Second-order perturbation theory with a complete active space self-consistent field reference function , 1992 .

[3]  Kerstin Andersson,et al.  Second-order perturbation theory with a CASSCF reference function , 1990 .

[4]  Kimihiko Hirao,et al.  Multireference Møller–Plesset perturbation treatment of potential energy curve of N2 , 1992 .

[5]  E. Davidson Selection of the Proper Canonical Roothaan-Hartree-Fock Orbitals for Particular Applications. I. Theory , 1972 .

[6]  Kenneth G. Dyall,et al.  The choice of a zeroth-order Hamiltonian for second-order perturbation theory with a complete active space self-consistent-field reference function , 1995 .

[7]  Per-Olov Löwdin,et al.  Note on the Separability Theorem for Electron Pairs , 1961 .

[8]  Péter R. Surján,et al.  AN INTRODUCTION TO THE THEORY OF GEMINALS , 1999 .

[9]  Robert B. Murphy,et al.  Generalized Møller—Plesset perturbation theory applied to general MCSCF reference wave functions , 1991 .

[10]  Werner Kutzelnigg,et al.  Direct Determination of Natural Orbitals and Natural Expansion Coefficients of Many‐Electron Wavefunctions. I. Natural Orbitals in the Geminal Product Approximation , 1964 .

[11]  G. Herzberg Molecular Spectra and Molecular Structure IV. Constants of Diatomic Molecules , 1939 .

[12]  P. Surján,et al.  Optimized partitioning in perturbation theory: Comparison to related approaches , 2000 .

[13]  K. Freed,et al.  Comparison of the perturbative convergence with multireference Möller–Plesset, Epstein–Nesbet, forced degenerate and optimized zeroth order partitionings: The excited BeH2 surface , 1997 .

[14]  Robert B. Murphy,et al.  Generalized Mo/ller–Plesset and Epstein–Nesbet perturbation theory applied to multiply bonded molecules , 1992 .

[15]  Chaudhuri,et al.  Convergence behavior of multireference perturbation theory: Forced degeneracy and optimization partitioning applied to the beryllium atom. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[16]  F. Bartha,et al.  The study of normal saturated hydrocarbons in the localized representation of the MBPT , 1988 .

[17]  C. Bauschlicher,et al.  Benchmark full configuration-interaction calculations on HF and NH2 , 1986 .

[18]  E. Kapuy Density matrices for wave functions built up of two-electron orbitals , 1960 .

[19]  Peter Pulay,et al.  Consistent generalization of the Møller-Plesset partitioning to open-shell and multiconfigurational SCF reference states in many-body perturbation theory , 1987 .

[20]  Ernest R. Davidson,et al.  Considerations in constructing a multireference second‐order perturbation theory , 1994 .

[21]  R. Poirier,et al.  Computational developments in generalized valence bond calculations , 1996, J. Comput. Chem..

[22]  P. Surján,et al.  Optimized partitioning in Rayleigh–Schrödinger perturbation theory , 1999 .

[23]  Kimihiko Hirao,et al.  Multireference Møller-Plesset method , 1992 .

[24]  Péter R. Surján,et al.  The interaction of chemical bonds. IV. Interbond charge transfer by a coupled‐cluster‐type formalism , 1995 .

[25]  R. Mcweeny,et al.  The density matrix in many-electron quantum mechanics I. Generalized product functions. Factorization and physical interpretation of the density matrices , 1959, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[26]  P. Surján,et al.  Interaction of chemical bonds. V. Perturbative corrections to geminal‐type wave functions , 2000 .

[27]  Mihály Kállay,et al.  Nonconventional partitioning of the many-body Hamiltonian for studying correlation effects , 1998 .

[28]  R. Mcweeny,et al.  Methods Of Molecular Quantum Mechanics , 1969 .

[29]  F. Bartha,et al.  Application of the many-body perturbation theory to normal saturated hydrocarbons in the localized representation , 1987 .

[30]  Robert G. Parr,et al.  Theory of Separated Electron Pairs , 1958 .

[31]  Peter Pulay,et al.  Generalized Mo/ller–Plesset perturbation theory: Second order results for two‐configuration, open‐shell excited singlet, and doublet wave functions , 1989 .

[32]  Peter Pulay,et al.  Orbital-invariant formulation and second-order gradient evaluation in Møller-Plesset perturbation theory , 1986 .

[33]  R. Nesbet Configuration interaction in orbital theories , 1955, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[34]  Rajat K. Chaudhuri,et al.  Applications of multireference perturbation theory to potential energy surfaces by optimal partitioning of H: Intruder states avoidance and convergence enhancement , 1995 .

[35]  T. H. Dunning Gaussian Basis Functions for Use in Molecular Calculations. III. Contraction of (10s6p) Atomic Basis Sets for the First‐Row Atoms , 1970 .

[36]  Mihály Kállay,et al.  Higher excitations in coupled-cluster theory , 2001 .

[37]  N. Handy,et al.  Full CI calculations on BH, H2O, NH3, and HF , 1983 .

[38]  Michael A. Robb,et al.  A simple MC SCF perturbation theory: Orthogonal valence bond Møller-Plesset 2 (OVB MP2) , 1988 .

[39]  J. Finley Diagrammatic complete active space perturbation theory , 1998 .

[40]  Hans-Joachim Werner,et al.  Multireference perturbation theory for large restricted and selected active space reference wave functions , 2000 .

[41]  Celestino Angeli,et al.  Introduction of n-electron valence states for multireference perturbation theory , 2001 .

[42]  John Edward Lennard-Jones,et al.  The molecular orbital theory of chemical valency XVI. A theory of paired-electrons in polyatomic molecules , 1953, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  H. Schaefer Methods of Electronic Structure Theory , 1977 .

[44]  Rodney J. Bartlett,et al.  Full configuration-interaction and state of the art correlation calculations on water in a valence double-zeta basis with polarization functions , 1996 .

[45]  P. S. Epstein,et al.  The Stark effect from the point of view of Schroedinger's quantum theory , 1926 .

[46]  Richard A. Friesner,et al.  Pseudospectral localized generalized Mo/ller–Plesset methods with a generalized valence bond reference wave function: Theory and calculation of conformational energies , 1997 .

[47]  V. A. Kuprievich,et al.  Computation scheme for optimizing multiconfigurational wave‐functions , 1976 .

[48]  R. Bartlett,et al.  Multireference many‐body perturbation theory , 1988 .

[49]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[50]  R. Bartlett,et al.  The description of N2 and F2 potential energy surfaces using multireference coupled cluster theory , 1987 .

[51]  B. Brandow Linked-Cluster Expansions for the Nuclear Many-Body Problem , 1967 .

[52]  G. Herzberg,et al.  Molecular Spectra and Molecular Structure , 1992 .

[53]  Péter R. Surján,et al.  THE INTERACTION OF CHEMICAL BONDS. III: PERTURBED STRICTLY LOCALIZED GEMINALS IN LMO BASIS , 1994 .

[54]  Richard P. Messmer,et al.  Calculations using generalized valence bond based Møller–Plesset perturbation theory , 2001 .

[55]  F. Bartha,et al.  Applications of the MBPT in the localized representation , 1990 .

[56]  H. Witek,et al.  Diagrammatic complete active space perturbation theory: Calculations on benzene, N2, and LiF , 2000 .

[57]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .

[58]  J. Pipek,et al.  Many-Body Perturbation Theory with Localized Orbitals — Kapuy’s Approach , 1999 .

[59]  Peter Pulay,et al.  Fourth‐order Mo/ller–Plessett perturbation theory in the local correlation treatment. I. Method , 1987 .

[60]  Nicholas C. Handy,et al.  Exact solution (within a double-zeta basis set) of the schrodinger electronic equation for water , 1981 .

[61]  E. Kapuy Extension of the separated pair theory , 1966 .

[62]  B. Roos,et al.  Lecture notes in quantum chemistry , 1992 .

[63]  Celestino Angeli,et al.  On a mixed Møller-Plesset Epstein-Nesbet partition of the Hamiltonian to be used in multireference perturbation configuration interaction , 2000 .

[64]  E. Kapuy Application of the extended separated pair theory to the π-electrons of trans-butadiene without zero differential overlap approximation , 1968 .

[65]  M. Ratner Molecular electronic-structure theory , 2000 .

[66]  Tadashi Arai,et al.  Theorem on Separability of Electron Pairs , 1960 .

[67]  E. Davidson,et al.  Unitary Transformations and Pair Energies. III. Relation to Perturbation Theory , 1972 .