Destination: Earth. Martian Meteorite Delivery

Abstract The delivery dynamics of martian meteorites are examined by means of a direct numerical simulation of their orbital evolution. The dynamics in the martian region are dominated by secular resonant effects, not by close encounters with Mars. These secular effects rapidly (∼1 Myr) transport martian ejecta to Earth-crossing orbits. The measured cosmic-ray exposure ages of the martian meteorites are consistent with their being directly launched as small bodies from the martian surface by impacts over the last ≃15 Myr. Collisional effects and being driven into the Sun efficiently destroy martian meteoroids in space on time scales of order 10 Myr. The implications of these results for the launch mechanism and microorganism transport are discussed.

[1]  T. Ahrens,et al.  Meteorite impact ejecta: dependence of mass and energy lost on planetary escape velocity. , 1977, Science.

[2]  Jacques Laskar,et al.  The chaotic motion of the solar system: A numerical estimate of the size of the chaotic zones , 1990 .

[3]  George W. Wetherill,et al.  Where do the Apollo objects come from , 1988 .

[4]  P. Michel,et al.  THE KOZAI RESONANCE FOR NEAR-EARTH ASTEROIDS WITH SEMIMAJOR AXES SMALLER THAN 2 AU , 1996 .

[5]  Giovanni B. Valsecchi,et al.  Asteroids falling into the Sun , 1994, Nature.

[6]  J. Laskar A numerical experiment on the chaotic behaviour of the Solar System , 1989, Nature.

[7]  Patrick Michel,et al.  The Location of Linear Secular Resonances for Semimajor Axes Smaller Than 2 AU , 1997 .

[8]  B J Gladman,et al.  Mars Meteorite Transfer: Simulation , 1996, Science.

[9]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[10]  H. Melosh Ejection of rock fragments from planetary bodies , 1985 .

[11]  D. Garrison,et al.  Solar-proton-produced neon in shergottite meteorites and implications for their origin , 1995 .

[12]  H. Scholl,et al.  The three principal secular resonances ν5, ν6, and ν16 in the asteroidal belt , 1989 .

[13]  P. N. Shukla,et al.  Cosmogenic effects in shergottites , 1986 .

[14]  William K. Hartmann,et al.  Planetesimals to planets: Numerical simulation of collisional evolution , 1978 .

[15]  K. Marti,et al.  COSMIC-RAY EXPOSURE HISTORY OF ORDINARY CHONDRITES , 1992 .

[16]  Alessandro Morbidelli,et al.  The Secular Resonances in the Solar System , 1994 .

[17]  S. P. Gill,et al.  Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena , 2002 .

[18]  C. Chyba Explosions of small Spacewatch objects in the Earth's atmosphere , 1993, Nature.

[19]  T. Ahrens,et al.  Oblique Impact: A Process for Obtaining Meteorite Samples from Other Planets , 1986, Science.

[20]  I. Halliday,et al.  The flux of meteorites on the Earth's surface , 1989 .

[21]  I. Halliday,et al.  The Frequency of Meteorite Falls: Comments on Two Conflicting Solutions to the Problem , 1991 .

[22]  Harry Y. McSween,et al.  What we have learned about Mars from SNC meteorites , 1994 .

[23]  J. Burns,et al.  The ethereal rings of Jupiter and Saturn , 1984 .

[24]  P. Warren Lunar and Martian Meteorite Delivery Services , 1994 .

[25]  G. Wetherill Orbital evolution of impact ejecta from Mars. , 1984 .

[26]  H. Melosh,et al.  The Large Crater Origin of SNC Meteorites , 1987, Science.

[27]  R. Ash,et al.  A 4-Gyr shock age for a martian meteorite and implications for the cratering history of Mars , 1996, Nature.

[28]  C. Tuniz,et al.  Beryllium-10 contents of shergottites, nakhlites, and Chassigny , 1986 .

[29]  L. Nyquist Do oblique impacts produce Martian meteorites , 1983 .

[30]  J. Goswami,et al.  Nuclear tracks and light noble gases in Allan Hills 84001: Preatmospheric size, fall characteristics, cosmic‐ray exposure duration and formation age , 1997 .

[31]  R. Zare,et al.  Search for Past Life on Mars: Possible Relic Biogenic Activity in Martian Meteorite ALH84001 , 1996, Science.

[32]  Allan H. Treiman,et al.  S ≠ NC: Multiple source areas for Martian meteorites , 1995 .

[33]  J. Burns,et al.  The astronomical theory of climatic change on Mars , 1980 .

[34]  C. B. Moore,et al.  Atmospheric ablation in meteorites: A study based on cosmic ray tracks and neon isotopes , 1980 .

[35]  H. Melosh,et al.  Origin of the Spacewatch Small Earth-Approaching Asteroids , 1996 .

[36]  Robert A Kolvoord,et al.  Collision lifetimes and impact statistics of near-Earth asteroids , 1993 .

[37]  W. Nellis,et al.  Observations of high-velocity, weakly shocked ejecta from experimental impacts , 1993, Nature.

[38]  A. Weigel,et al.  Ejection times of Martian meteorites , 1997 .

[39]  Delivery of Planetary Ejecta to Earth. , 1996 .

[40]  Manabu Kato,et al.  Ice-on-Ice Impact Experiments , 1995 .

[41]  C. Froeschlé,et al.  Interrelations between physics and dynamics for minor bodies in the solar system , 1992 .

[42]  M. S. Matthews,et al.  Hazards Due to Comets and Asteroids , 1992 .

[43]  Harold F. Levison,et al.  Dynamical Lifetimes of Objects Injected into Asteroid Belt Resonances , 1997 .

[44]  J. Henrard,et al.  Secular resonances in the asteroid belt: Theoretical perturbation approach and the problem of their location , 1991 .

[45]  G. Wetherill Cratering of the terrestrial planets by Apollo objects , 1989 .

[46]  Patrick Michel,et al.  Dynamical evolution of two near-Earth asteroids to be explored by spacecraft: (433) Eros and (4660) Nereus. , 1996 .

[47]  H. Melosh Impact ejection, spallation, and the origin of meteorites , 1984 .

[48]  A. Treiman A petrographic history of martian meteorite ALH84001: Two shocks and an ancient age , 1995 .

[49]  D. Mittlefehldt,et al.  ALH84001, a cumulate orthopyroxenite member of the martian meteorite clan , 1994 .

[50]  M. Lindstrom,et al.  Comparison of the LEW88516 and ALHA77005 martian meteorites: Similar but distinct , 1994 .

[51]  Harold F. Levison,et al.  The Long-Term Dynamical Behavior of Short-Period Comets , 1993 .

[52]  Jacques Laskar,et al.  The Chaotic Motion of the Solar System , 1993 .

[53]  J. Burns,et al.  The Exchange of Impact Ejecta Between Terrestrial Planets , 1996, Science.

[54]  G. M. Clemence,et al.  Methods of Celestial Mechanics , 1962 .

[55]  Harold F. Levison,et al.  The Dynamical Evolution of Lunar Impact Ejecta , 1995 .

[56]  A. Vickery,et al.  Variation in ejecta size with ejection velocity , 1987 .

[57]  G. Huss Meteorite Infall as a Function of Mass: Implications for the Accumulation of Meteorites on Antarctic Ice , 1990 .