An HST optical-to-near-IR transmission spectrum of the hot Jupiter WASP-19b: detection of atmospheric water and likely absence of TiO

We measure the transmission spectrum of WASP-19b from three transits using low-resolution optical spectroscopy from the Hubble Space Telescope (HST) Space Telescope Imaging Spectrograph (STIS). The STIS spectra cover a wavelength range of 0.29-1.03 µm, with resolving power R = 500. The optical data are combined with archival near-infrared data from the HST Wide Field Camera 3 (WFC3) G141 grism, covering the wavelength range from 1.087 to 1.687 µm, with resolving power R = 130. We reach S/N levels between 3,000 and 11,000 in 0.1 µm bins when measuring the transmission spectra from 0.53-1.687 µm. WASP-19 is known to be a very active star, with the optical stellar flux varying by a few per cent over time. We correct the transit light curves for the effects of stellar activity using ground-based activity monitoring with the Cerro Tololo Inter-American Observatory (CTIO). While we were not able to construct a transmission spectrum using the blue optical data because of the presence of large occulted star spots, we were able to use the spot crossings to help constrain the mean stellar spot temperature. To search for predicted features in the hot-Jupiter atmosphere, in addition to the transmission spectrum we also define spectral indices for differential radius (�RP/R⋆) measurements to specifically search for the presence of TiO and alkali line features. Our measurements rule out TiO features predicted for a planet of WASP-19b’s equilibrium temperature (2050 K) in the transmission spectrum at the 2.7-2.9 σ confidence level, depending on atmospheric model formalism. The WFC3 transmission spectrum shows strong absorption features due to the presence of H2O, which is detected at the 4 σ confidence level between 1.1 and 1.4 µm. The transmission spectra results indicate that WASP-19b is a planet with no or low levels of TiO and without a high C/O ratio. The lack of observable TiO features are possibly due to rainout, breakdown from stellar activity or the presence of other absorbers in the optical.

[1]  E. Jehin,et al.  A Photometric Study of the Hot Exoplanet WASP-19b , 2012, 1212.3553.

[2]  S. Aigrain,et al.  A Gemini ground-based transmission spectrum of WASP-29b: a featureless spectrum from 515 to 720 nm , 2012, 1210.7798.

[3]  S. Aigrain,et al.  The prevalence of dust on the exoplanet HD 189733b from Hubble and Spitzer observations , 2012, 1210.4163.

[4]  B. Scott Gaudi,et al.  EXOFAST: A Fast Exoplanetary Fitting Suite in IDL , 2012, 1206.5798.

[5]  Christopher J. Campo,et al.  Thermal emission at 3.6–8 μm from WASP-19b: a hot Jupiter without a stratosphere orbiting an active star , 2011, 1112.5145.

[6]  R. Freedman,et al.  CHEMICAL CONSEQUENCES OF THE C/O RATIO ON HOT JUPITERS: EXAMPLES FROM WASP-12b, CoRoT-2b, XO-1b, AND HD 189733b , 2012, The Astrophysical journal.

[7]  Nicolas Crouzet,et al.  TRANSMISSION SPECTROSCOPY OF EXOPLANET XO-2b OBSERVED WITH HUBBLE SPACE TELESCOPE NICMOS , 2012, 1210.5275.

[8]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[9]  D. Ehrenreich,et al.  GTC OSIRIS transiting exoplanet atmospheric survey: detection of sodium in XO-2b from differential long-slit spectroscopy† , 2012, 1208.4982.

[10]  A. Burrows,et al.  THEORETICAL TRANSIT SPECTRA FOR GJ 1214b AND OTHER “SUPER-EARTHS” , 2012, 1203.1921.

[11]  J. D'esert,et al.  Temperature–pressure profile of the hot Jupiter HD 189733b from HST sodium observations: detection of upper atmospheric heating , 2012, 1202.4721.

[12]  Caltech,et al.  Probing the haze in the atmosphere of HD 189733b with HST/WFC3 transmission spectroscopy , 2012, 1201.6573.

[13]  J. Fortney,et al.  THE FLAT TRANSMISSION SPECTRUM OF THE SUPER-EARTH GJ1214b FROM WIDE FIELD CAMERA 3 ON THE HUBBLE SPACE TELESCOPE , 2011, 1111.5621.

[14]  S. Aigrain,et al.  Correction to: A simple method to estimate radial velocity variations due to stellar activity using photometry , 2011, Monthly Notices of the Royal Astronomical Society.

[15]  S. Aigrain,et al.  A Gaussian process framework for modelling instrumental systematics: application to transmission spectroscopy , 2011, 1109.3251.

[16]  L. Koesterke,et al.  A SURVEY OF ALKALI LINE ABSORPTION IN EXOPLANETARY ATMOSPHERES , 2011, 1109.1802.

[17]  Stephen R. Kane,et al.  TERMS PHOTOMETRY OF KNOWN TRANSITING EXOPLANETS , 2011, 1108.2308.

[18]  N. Gibson,et al.  Hubble Space Telescope transmission spectroscopy of the exoplanet HD 189733b: high‐altitude atmospheric haze in the optical and near‐ultraviolet with STIS , 2011, 1103.0026.

[19]  D. Queloz,et al.  ON THE ORBIT OF THE SHORT-PERIOD EXOPLANET WASP-19b , 2011, 1101.3293.

[20]  W. C. Bowman,et al.  A high C/O ratio and weak thermal inversion in the atmosphere of exoplanet WASP-12b , 2010, Nature.

[21]  David Charbonneau,et al.  THE GJ1214 SUPER-EARTH SYSTEM: STELLAR VARIABILITY, NEW TRANSITS, AND A SEARCH FOR ADDITIONAL PLANETS , 2010, 1012.0518.

[22]  D. Ehrenreich,et al.  Gran Telescopio Canarias OSIRIS transiting exoplanet atmospheric survey: detection of potassium in XO-2b from narrowband spectrophotometry , 2010, 1008.4795.

[23]  Thomas P. Greene,et al.  TRANSMISSION SPECTRA OF TRANSITING PLANET ATMOSPHERES: MODEL VALIDATION AND SIMULATIONS OF THE HOT NEPTUNE GJ 436b FOR THE JAMES WEBB SPACE TELESCOPE , 2010, 1010.2451.

[24]  University of Exeter,et al.  A new look at NICMOS transmission spectroscopy of HD 189733, GJ-436 and XO-1: no conclusive evidence for molecular features , 2010, 1010.1753.

[25]  Adam Burrows,et al.  PHOTOMETRIC AND SPECTRAL SIGNATURES OF THREE-DIMENSIONAL MODELS OF TRANSITING GIANT EXOPLANETS , 2010, 1005.0346.

[26]  Howard Isaacson,et al.  A CORRELATION BETWEEN STELLAR ACTIVITY AND HOT JUPITER EMISSION SPECTRA , 2010, 1004.2702.

[27]  P. McCullough,et al.  PROBING THE TERMINATOR REGION ATMOSPHERE OF THE HOT-JUPITER XO-1b WITH TRANSMISSION SPECTROSCOPY , 2010, 1002.2434.

[28]  David K. Sing,et al.  Stellar limb-darkening coefficients for CoRot and Kepler , 2009, 0912.2274.

[29]  R. G. West,et al.  WASP-19b: THE SHORTEST PERIOD TRANSITING EXOPLANET YET DISCOVERED , 2010, 1001.0403.

[30]  A. P. Showman,et al.  TRANSMISSION SPECTRA OF THREE-DIMENSIONAL HOT JUPITER MODEL ATMOSPHERES , 2009, 0912.2350.

[31]  A. Gimenez,et al.  Accurate masses and radii of normal stars: modern results and applications , 2009, 0908.2624.

[32]  G. Hebrard,et al.  Transit spectrophotometry of the exoplanet HD189733b. I. Searching for water but finding haze with HST NICMOS , 2009, 0907.4991.

[33]  K. Lodders,et al.  ATMOSPHERIC SULFUR PHOTOCHEMISTRY ON HOT JUPITERS , 2009, 0903.1663.

[34]  Adam Burrows,et al.  CAN TiO EXPLAIN THERMAL INVERSIONS IN THE UPPER ATMOSPHERES OF IRRADIATED GIANT PLANETS? , 2009, 0902.3995.

[35]  David Charbonneau,et al.  ATMOSPHERIC CIRCULATION OF HOT JUPITERS: COUPLED RADIATIVE-DYNAMICAL GENERAL CIRCULATION MODEL SIMULATIONS OF HD 189733b and HD 209458b , 2008, 0809.2089.

[36]  Rui Zhang,et al.  Data Reduction , 2009, Encyclopedia of Database Systems.

[37]  Carl J. Grillmair,et al.  Strong water absorption in the dayside emission spectrum of the planet HD 189733b , 2008, Nature.

[38]  D. Ehrenreich,et al.  TiO and VO broad band absorption features in the optical spectrum of the atmosphere of the hot-Jupiter HD 209458b , 2008, 0809.1865.

[39]  S. Albrecht,et al.  Ground-based detection of sodium in the transmission spectrum of exoplanet HD209458b , 2008, 0805.0789.

[40]  Joshua N. Winn,et al.  The Transit Light Curve Project. IX. Evidence for a Smaller Radius of the Exoplanet XO-3b , 2008, 0804.4475.

[41]  Gautam Vasisht,et al.  The presence of methane in the atmosphere of an extrasolar planet , 2008, Nature.

[42]  G. Ballester,et al.  Hubble Space Telescope STIS Optical Transit Transmission Spectra of the Hot Jupiter HD 209458b , 2008, 0802.3864.

[43]  A. D. Etangs,et al.  Rayleigh scattering in the transit spectrum of HD 189733b , 2008, 0802.3228.

[44]  Richard S. Freedman,et al.  A Unified Theory for the Atmospheres of the Hot and Very Hot Jupiters: Two Classes of Irradiated Atmospheres , 2007, 0710.2558.

[45]  I. Hubeny,et al.  Theoretical Spectra and Light Curves of Close-in Extrasolar Giant Planets and Comparison with Data , 2007, 0709.4080.

[46]  David Charbonneau,et al.  The 3.6-8.0 μm Broadband Emission Spectrum of HD 209458b: Evidence for an Atmospheric Temperature Inversion , 2007, 0709.3984.

[47]  M. Marley,et al.  Line and Mean Opacities for Ultracool Dwarfs and Extrasolar Planets , 2007, 0706.2374.

[48]  C. Moutou,et al.  Detection of atmospheric haze on an extrasolar planet: the 0.55–1.05 μm transmission spectrum of HD 189733b with the Hubble Space Telescope , 2007, 0712.1374.

[49]  L. Koesterke,et al.  Sodium Absorption from the Exoplanetary Atmosphere of HD 189733b Detected in the Optical Transmission Spectrum , 2007, 0712.0761.

[50]  David Charbonneau,et al.  Theoretical Spectral Models of the Planet HD 209458b with a Thermal Inversion and Water Emission Bands , 2007, 0709.3980.

[51]  Avi Shporer,et al.  The Transit Light Curve Project. VII. The Not-So-Bloated Exoplanet HAT-P-1b , 2007, 0707.1908.

[52]  T. Barman Identification of Absorption Features in an Extrasolar Planet Atmosphere , 2007, 0704.1114.

[53]  Frederic Pont,et al.  The effect of red noise on planetary transit detection , 2006, astro-ph/0608597.

[54]  A. Burrows,et al.  Atomic and Molecular Opacities for Brown Dwarf and Giant Planet Atmospheres , 2006, astro-ph/0607211.

[55]  David Charbonneau,et al.  Using Stellar Limb-Darkening to Refine the Properties of HD 209458b , 2006, astro-ph/0603542.

[56]  Jonathan J. Fortney,et al.  The effect of condensates on the characterization of transiting planet atmospheres with transmission spectroscopy , 2005, astro-ph/0509292.

[57]  M. Tamura,et al.  Subaru HDS transmission spectroscopy of the transiting extrasolar planet HD 209458b , 2005, astro-ph/0504540.

[58]  T. Guillot,et al.  A time-dependent radiative model of HD 209458b , 2004, astro-ph/0409468.

[59]  A. Burrows,et al.  A Possible Bifurcation in Atmospheres of Strongly Irradiated Stars and Planets , 2003, astro-ph/0305349.

[60]  Daniel Durand,et al.  Astronomical Data Analysis Software and Systems XI , 2009 .

[61]  K. Lodders,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars. II. Sulfur and Phosphorus , 2005, astro-ph/0511136.

[62]  E. Agol,et al.  Analytic Light Curves for Planetary Transit Searches , 2002, astro-ph/0210099.

[63]  K. Lodders Titanium and Vanadium Chemistry in Low-Mass Dwarf Stars , 2002 .

[64]  B. Fegley,et al.  Atmospheric Chemistry in Giant Planets, Brown Dwarfs, and Low-Mass Dwarf Stars: I. Carbon, Nitrogen, and Oxygen , 2002 .

[65]  R. Gilliland,et al.  Detection of an Extrasolar Planet Atmosphere , 2001, astro-ph/0111544.

[66]  A. Burrows,et al.  The theory of brown dwarfs and extrasolar giant planets , 2001, astro-ph/0103383.

[67]  A. Burrows,et al.  Hubble Space Telescope Time-Series Photometry of the Transiting Planet of HD 209458 , 2001, astro-ph/0101336.

[68]  T. Brown Transmission Spectra as Diagnostics of Extrasolar Giant Planet Atmospheres , 2001, astro-ph/0101307.

[69]  A. Burrows,et al.  The Near-Infrared and Optical Spectra of Methane Dwarfs and Brown Dwarfs , 1999, astro-ph/9908078.

[70]  Princeton,et al.  Theoretical Transmission Spectra during Extrasolar Giant Planet Transits , 1999, astro-ph/9912241.

[71]  K. Lodders Alkali Element Chemistry in Cool Dwarf Atmospheres , 1999 .

[72]  A. Burrows,et al.  Chemical Equilibrium Abundances in Brown Dwarf and Extrasolar Giant Planet Atmospheres , 1998, astro-ph/9807055.

[73]  S. Baliunas,et al.  Rotation, convection, and magnetic activity in lower main-sequence stars , 1984 .

[74]  G. Schwarz Estimating the Dimension of a Model , 1978 .