An Efficient Data Structure for an Adaptive Vlasov Solver

Solving the Vlasov equation represents a great challenge due to the huge size of the problem. A specific numerical adaptive method is used to reduce the amount of computations. This method uses a structured dyadic mesh. In this paper, we focus on the design of an appropriate data-structure for minimizing memory usage and time access. After having modeled the data accesses, we propose two data-structures and several optimizations. One data structure is based on hash tables and the other one on 2-level arrays. Experimental results show the performance of these structures for serial and distributed memory parallel machines.

[1]  M. Berger,et al.  Adaptive mesh refinement for hyperbolic partial differential equations , 1982 .

[2]  Eric Violard,et al.  Parallelization of an Adaptive Vlasov Solver , 2004, PVM/MPI.

[3]  J.C. Browne,et al.  A Common Data Management Infrastructure for Adaptive Algorithms for PDE Solutions , 1997, ACM/IEEE SC 1997 Conference (SC'97).

[4]  Eric Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of Vlasov Equations , 1998 .

[5]  John Zahorjan,et al.  Array restructuring for cache locality , 1996 .

[6]  Arnold L. Rosenberg,et al.  What Is a Multilevel Array? , 1975, IBM J. Res. Dev..

[7]  Francis Filbet,et al.  Direct Axisymmetric Vlasov Simulations of Space Charge Dominated Beams , 2002, International Conference on Computational Science.

[8]  Mahmut T. Kandemir,et al.  Enhancing Spatial Locality via Data Layout Optimizations , 1998, Euro-Par.

[9]  Nicolas Besse,et al.  Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .

[10]  Martin Campos Pinto,et al.  Adaptive numerical resolution of the Vlasov equation. , 2005 .

[11]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[12]  Eric Violard,et al.  A parallel adaptive Vlasov solver based on hierarchical finite element interpolation , 2006 .

[13]  Ken Kennedy,et al.  Optimizing for parallelism and data locality , 1992, ICS '92.

[14]  Larry Carter,et al.  Localizing non-affine array references , 1999, 1999 International Conference on Parallel Architectures and Compilation Techniques (Cat. No.PR00425).

[15]  A.M. Wissink,et al.  Large Scale Parallel Structured AMR Calculations Using the SAMRAI Framework , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[16]  Wei Li,et al.  Interprocedural array remapping , 1997, Proceedings 1997 International Conference on Parallel Architectures and Compilation Techniques.

[17]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[18]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[19]  Chau-Wen Tseng,et al.  Compiler optimizations for improving data locality , 1994, ASPLOS VI.

[20]  James M. Kang,et al.  Space-Filling Curves , 2017, Encyclopedia of GIS.