Visualization of Isosurfaces with Parametric Cubes

To render images from volume datasets, an interpolation method also called reconstruction is needed. The level of details of the resultant image closely depends on the filter used for reconstruction. We propose here a new filter producing C1 continue surfaces. The provided image quality is better than current high‐quality algorithms, like splatting or trilinear raycasting, where tiny details are often eliminated. In contrast with other studied high quality filters that are practically unusable, our algorithm has been implemented interactively on a modest platform thanks to an efficient implementation using parametric cubes. We also demonstrate the interest of a min‐max octree in the visualization of isosurfaces interactively thresholded.

[1]  Klaus Mueller,et al.  Evaluation and Design of Filters Using a Taylor Series Expansion , 1997, IEEE Trans. Vis. Comput. Graph..

[2]  Irene Gargantini,et al.  Linear octtrees for fast processing of three-dimensional objects , 1982, Comput. Graph. Image Process..

[3]  Jean-Pierre Jessel,et al.  Accelerating Volume Rendering with Quantized Voxels , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[4]  Klaus Mueller,et al.  Splatting without the blur , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[5]  Gordon Clapworthy,et al.  Fast Volume Rendering and Data Classification Using Multiresolution in Min‐Max Octrees , 2000, Comput. Graph. Forum.

[6]  W. Lorensen,et al.  Two algorithms for the three-dimensional reconstruction of tomograms. , 1988, Medical physics.

[7]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[8]  Marc Levoy,et al.  Display of surfaces from volume data , 1988, IEEE Computer Graphics and Applications.

[9]  Arie E. Kaufman,et al.  Template‐Based Volume Viewing , 1992, Comput. Graph. Forum.

[10]  Gunter Knittel,et al.  The ULTRAVIS System , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[11]  Ming Wan,et al.  High performance presence-accelerated ray casting , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).

[12]  Lee Westover,et al.  Footprint evaluation for volume rendering , 1990, SIGGRAPH.

[13]  John Amanatides,et al.  A Fast Voxel Traversal Algorithm for Ray Tracing , 1987, Eurographics.

[14]  Grit Thürmer,et al.  Normal Computation for Discrete Surfaces in 3D Space , 1997, Comput. Graph. Forum.

[15]  Eduard Gröller,et al.  Interactive High‐Quality Maximum Intensity Projection , 2000, Comput. Graph. Forum.

[16]  Jian Huang,et al.  FastSplats: optimized splatting on rectilinear grids , 2000, IEEE Visualization.

[17]  James T. Kajiya,et al.  Ray tracing volume densities , 1984, SIGGRAPH.

[18]  Klaus Mueller,et al.  FastSplats: optimized splatting on rectilinear grids , 2000, VIS '00.

[19]  Pat Hanrahan,et al.  Volume rendering , 1998 .

[20]  Marc Levoy,et al.  Efficient ray tracing of volume data , 1990, TOGS.

[21]  M. Levoy,et al.  Fast volume rendering using a shear-warp factorization of the viewing transformation , 1994, SIGGRAPH.

[22]  René Caubet,et al.  Discrete Ray‐Tracing of Huge Voxel Spaces , 1995, Comput. Graph. Forum.

[23]  H. Hauser,et al.  Mastering Windows: Improving Reconstruction , 2000, 2000 IEEE Symposium on Volume Visualization (VV 2000).

[24]  László Neumann,et al.  Gradient Estimation in Volume Data using 4D Linear Regression , 2000, Comput. Graph. Forum.

[25]  Paolo Sabella,et al.  A rendering algorithm for visualizing 3D scalar fields , 1988, SIGGRAPH.

[26]  Jayaram K. Udupa,et al.  Surface Shading in the Cuberille Environment , 1985, IEEE Computer Graphics and Applications.

[27]  Steve Marschner,et al.  An evaluation of reconstruction filters for volume rendering , 1994, Proceedings Visualization '94.

[28]  Benjamin Mora,et al.  Accelerating volume rendering with quantized voxels , 2000, VVS.