Optimum cut-based clustering

This paper presents a new method for solving clustering problem. We treat clustering as a graph-partitioning problem and propose a new global criterion, the optimum cut, for segmenting the graph. An important feature is that optimizing the optimum cut criterion can ensure that the intra-cluster similarity is maximized while the inter-cluster similarity is minimized. We show that an efficient computational technique based on an eigenvalue problem can be used to optimize this criterion. The experimental results on a number of hard artificial and real-world data sets show the effectiveness of the approach.

[1]  David G. Stork,et al.  Pattern Classification , 1973 .

[2]  Andrew B. Kahng,et al.  Spectral Partitioning with Multiple Eigenvectors , 1999, Discret. Appl. Math..

[3]  D. Mumford,et al.  Optimal approximations by piecewise smooth functions and associated variational problems , 1989 .

[4]  Charles J. Alpert,et al.  Spectral Partitioning: The More Eigenvectors, The Better , 1995, 32nd Design Automation Conference.

[5]  Yair Weiss,et al.  Segmentation using eigenvectors: a unifying view , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[6]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[7]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[9]  Jitendra Malik,et al.  Motion segmentation and tracking using normalized cuts , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[10]  Jitendra Malik,et al.  Spectral grouping using the Nystrom method , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[11]  Jitendra Malik,et al.  Normalized cuts and image segmentation , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[12]  Simon K. Warfield,et al.  Spectral Clustering Algorithms for Ultrasound Image Segmentation , 2005, MICCAI.

[13]  Chris H. Q. Ding,et al.  A min-max cut algorithm for graph partitioning and data clustering , 2001, Proceedings 2001 IEEE International Conference on Data Mining.

[14]  Roderick Urquhart,et al.  Graph theoretical clustering based on limited neighbourhood sets , 1982, Pattern Recognit..

[15]  Charles T. Zahn,et al.  and Describing GestaltClusters , 1971 .

[16]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[17]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[18]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[19]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[20]  Jianbo Shi,et al.  Learning Segmentation by Random Walks , 2000, NIPS.

[21]  Andrew B. Kahng,et al.  New spectral methods for ratio cut partitioning and clustering , 1991, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[22]  Michael Werman,et al.  Stochastic image segmentation by typical cuts , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[23]  Serge Miguet,et al.  Weighted Adaptive Neighborhood Hypergraph Partitioning for Image Segmentation , 2005, ICAPR.

[24]  G. McLachlan,et al.  The EM algorithm and extensions , 1996 .