Sobolev training of thermodynamic-informed neural networks for smoothed elasto-plasticity models with level set hardening

We introduce a deep learning framework designed to train smoothed elastoplasticity models with interpretable components, such as a smoothed stored elastic energy function, a yield surface, and a plastic flow that are evolved based on a set of deep neural network predictions. By recasting the yield function as an evolving level set, we introduce a machine learning approach to predict the solutions of the Hamilton-Jacobi equation that governs the hardening mechanism. This machine learning hardening law may recover classical hardening models and discover new mechanisms that are otherwise very difficult to anticipate and hand-craft. This treatment enables us to use supervised machine learning to generate models that are thermodynamically consistent, interpretable, but also exhibit excellent learning capacity. Using a 3D FFT solver to create a polycrystal database, numerical experiments are conducted and the implementations of each component of the models are individually verified. Our numerical experiments reveal that this new approach provides more robust and accurate forward predictions of cyclic stress paths than these obtained from black-box deep neural network models such as a recurrent GRU neural network, a 1D convolutional neural network, and a multi-step feedforward model.

[1]  WaiChing Sun,et al.  SO(3)-invariance of informed-graph-based deep neural network for anisotropic elastoplastic materials , 2020, Computer Methods in Applied Mechanics and Engineering.

[2]  Timothy Dozat,et al.  Incorporating Nesterov Momentum into Adam , 2016 .

[3]  Qiang Du,et al.  A cooperative game for automated learning of elasto-plasticity knowledge graphs and models with AI-guided experimentation , 2019, Computational Mechanics.

[4]  Razvan Pascanu,et al.  Sobolev Training for Neural Networks , 2017, NIPS.

[5]  M. Lambrecht,et al.  Anisotropic additive plasticity in the logarithmic strain space: modular kinematic formulation and implementation based on incremental minimization principles for standard materials , 2002 .

[6]  Bernhard A. Schrefler,et al.  Artificial Neural Networks in numerical modelling of composites , 2009 .

[7]  K. Roscoe,et al.  ON THE GENERALIZED STRESS-STRAIN BEHAVIOUR OF WET CLAY , 1968 .

[8]  Ronaldo I. Borja,et al.  Cam-Clay plasticity, Part IV : Implicit integration of anisotropic bounding surface model with nonlinear hyperelasticity and ellipsoidal loading function , 2001 .

[9]  Stefanie Reese,et al.  Efficient multiscale FE-FFT-based modeling and simulation of macroscopic deformation processes with non-linear heterogeneous microstructures , 2018 .

[10]  Jürgen Schmidhuber,et al.  Learning to Forget: Continual Prediction with LSTM , 2000, Neural Computation.

[11]  R. Borja,et al.  Discrete micromechanics of elastoplastic crystals , 1993 .

[12]  M Mozaffar,et al.  Deep learning predicts path-dependent plasticity , 2019, Proceedings of the National Academy of Sciences.

[13]  Yoshua Bengio,et al.  Convolutional networks for images, speech, and time series , 1998 .

[14]  WaiChing Sun,et al.  Geometric deep learning for computational mechanics Part I: Anisotropic Hyperelasticity , 2020, ArXiv.

[15]  J. Rice Inelastic constitutive relations for solids: An internal-variable theory and its application to metal plasticity , 1971 .

[16]  WaiChing Sun,et al.  Modeling the hydro-mechanical responses of strip and circular punch loadings on water-saturated collapsible geomaterials , 2014 .

[17]  Bezalel C. Haimson,et al.  The effect of the intermediate principal stress on fault formation and fault angle in siltstone , 2010 .

[18]  Claude-Henri Lamarque,et al.  Application of neural networks to the modelling of some constitutive laws , 1999, Neural Networks.

[19]  D. Owen,et al.  Computational methods for plasticity : theory and applications , 2008 .

[20]  W. Lode,et al.  Versuche über den Einfluß der mittleren Hauptspannung auf das Fließen der Metalle Eisen, Kupfer und Nickel , 1926 .

[21]  Heiga Zen,et al.  WaveNet: A Generative Model for Raw Audio , 2016, SSW.

[22]  WaiChing Sun,et al.  A non-cooperative meta-modeling game for automated third-party calibrating, validating, and falsifying constitutive laws with parallelized adversarial attacks , 2020, ArXiv.

[23]  松岡 元,et al.  Relationship among Tresca,Mises,Mohr-Coulomb and Matsuoka-Nakai Failure Criteria , 1985 .

[24]  WaiChing Sun,et al.  A micromorphically regularized Cam-clay model for capturing size-dependent anisotropy of geomaterials , 2019, Computer Methods in Applied Mechanics and Engineering.

[25]  WaiChing Sun,et al.  FFT-based solver for higher-order and multi-phase-field fracture models applied to strongly anisotropic brittle materials , 2020, Computer Methods in Applied Mechanics and Engineering.

[26]  D. C. Drucker Some implications of work hardening and ideal plasticity , 1950 .

[27]  James H. Garrett,et al.  Knowledge-Based Modeling of Material Behavior with Neural Networks , 1992 .

[28]  Yannis F. Dafalias,et al.  BOUNDING SURFACE PLASTICITY, I: MATHEMATICAL FOUNDATION AND HYPOPLASTICITY , 1986 .

[29]  Alberto Tonda,et al.  Data driven modeling of plastic deformation , 2017 .

[30]  Yuan Yu,et al.  TensorFlow: A system for large-scale machine learning , 2016, OSDI.

[31]  Dirk Mohr,et al.  Using neural networks to represent von Mises plasticity with isotropic hardening , 2020 .

[32]  Teruo Nakai,et al.  RELATIONSHIP AMONG TRESCA, MISES, MOHR-COULOMB AND MATSUOKA-NAKAI FAILURE CRITERIA , 1985 .

[33]  WaiChing Sun,et al.  A unified method to predict diffuse and localized instabilities in sands , 2013 .

[34]  R. Mises Mechanik der festen Körper im plastisch- deformablen Zustand , 1913 .

[35]  R. Hill The mathematical theory of plasticity , 1950 .

[36]  de Saint-Venant,et al.  Mémoire sur l'établissement des équations différentielles des mouvements intérieurs opérés dans les corps solides ductiles au delà des limites où l'élasticité pourrait les ramener à leur premier état. , 1871 .

[37]  Eric Darve,et al.  Learning Constitutive Relations using Symmetric Positive Definite Neural Networks , 2020, ArXiv.

[38]  Ronaldo I. Borja,et al.  Multiaxial Cyclic Plasticity Model for Clays , 1994 .

[39]  S. Reese,et al.  Two-scale FE–FFT- and phase-field-based computational modeling of bulk microstructural evolution and macroscopic material behavior , 2016 .

[40]  Yoshua Bengio,et al.  Learning Phrase Representations using RNN Encoder–Decoder for Statistical Machine Translation , 2014, EMNLP.

[41]  Guy T. Houlsby,et al.  THE USE OF A VARIABLE SHEAR MODULUS IN ELASTIC-PLASTIC MODELS FOR CLAYS , 1985 .

[42]  Youssef M A Hashash,et al.  Numerical implementation of a neural network based material model in finite element analysis , 2004 .

[43]  Yannis F. Dafalias,et al.  SANISAND: Simple anisotropic sand plasticity model , 2008 .

[44]  Chris Eliasmith,et al.  Hyperopt: a Python library for model selection and hyperparameter optimization , 2015 .

[45]  William Prager,et al.  The Theory of Plasticity: A Survey of Recent Achievements , 1955 .

[46]  Chris Eliasmith,et al.  Hyperopt-Sklearn: Automatic Hyperparameter Configuration for Scikit-Learn , 2014, SciPy.

[47]  Dimitrios Kolymbas,et al.  An outline of hypoplasticity , 1991, Archive of Applied Mechanics.

[48]  WaiChing Sun,et al.  IDENTIFYING MATERIAL PARAMETERS FOR A MICRO-POLAR PLASTICITY MODEL VIA X-RAY MICRO-COMPUTED TOMOGRAPHIC (CT) IMAGES: LESSONS LEARNED FROM THE CURVE-FITTING EXERCISES , 2016 .

[49]  Genki Yagawa,et al.  Implicit constitutive modelling for viscoplasticity using neural networks , 1998 .

[50]  S. Sloan,et al.  A smooth hyperbolic approximation to the Mohr-Coulomb yield criterion , 1995 .

[51]  Kun Wang,et al.  A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning , 2018, Computer Methods in Applied Mechanics and Engineering.

[52]  Richard A. Regueiro,et al.  Implicit numerical integration of a three-invariant, isotropic/kinematic hardening cap plasticity model for geomaterials , 2005 .

[53]  Viggo Tvergaard,et al.  Ductile shear failure or plug failure of spot welds modelled by modified Gurson model , 2010 .

[54]  L. W. Carlson,et al.  New method for true-triaxial rock testing , 1997 .