Statistical detection and isolation of additive faults in linear time-varying systems

This paper describes a statistical approach to fault detection and isolation for linear time-varying (LTV) systems subject to additive faults with time-varying profiles. The proposed approach combines a generalized likelihood ratio (GLR) test with a recursive filter that cancels out the dynamics of the monitored fault effects. To our knowledge, the proposed recursive filter is new for the considered faults. The resulting algorithm handles fault isolation with weaker assumptions than usual, in particular regarding the requirements on the number of sensors and on the stability of the monitored system. Numerical results for leakage detection in a gas transportation network illustrate the effectiveness of the proposed method.

[1]  J. Bokor Fault Detection and Isolation in Nonlinear Systems , 2009 .

[2]  Vicenç Puig,et al.  Interval LPV identification and fault diagnosis of a real wind turbine , 2012 .

[3]  László Keviczky,et al.  Robust detection filter design in the presence of time-varying system perturbations , 1997, Autom..

[4]  Alexandru Ticlea,et al.  Adaptive observer for discrete time state affine systems , 2012 .

[5]  Donghua Zhou,et al.  On Designing $H_{\infty}$ Fault Detection Filter for Linear Discrete Time-Varying Systems , 2010, IEEE Transactions on Automatic Control.

[6]  Michèle Basseville,et al.  Information criteria for residual generation and fault detection and isolation , 1997, Autom..

[7]  Qinghua Zhang,et al.  Adaptive observer for multiple-input-multiple-output (MIMO) linear time-varying systems , 2002, IEEE Trans. Autom. Control..

[8]  Paulo J. Lopes dos Santos,et al.  An LPV Modeling and Identification Approach to Leakage Detection in High Pressure Natural Gas Transportation Networks , 2011, IEEE Transactions on Control Systems Technology.

[9]  Michèle Basseville,et al.  Detection of abrupt changes: theory and application , 1993 .

[10]  P. Müller,et al.  Disturbance decoupled observer design: a unified viewpoint , 1994, IEEE Trans. Autom. Control..

[11]  Jason L. Speyer,et al.  Optimal stochastic fault detection filter , 2003, Autom..

[12]  Michèle Basseville,et al.  FAULT ISOLATION FOR DIAGNOSIS: NUISANCE REJECTION AND MULTIPLE HYPOTHESES TESTING , 2002 .

[13]  Qinghua Zhang,et al.  Revisiting different adaptive observers through a unified formulation , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[14]  R. Patton,et al.  Optimal filtering for systems with unknown inputs , 1998, IEEE Trans. Autom. Control..

[15]  Steven X. Ding,et al.  Model-based Fault Diagnosis Techniques: Design Schemes, Algorithms, and Tools , 2008 .

[16]  Daniel Ossmann,et al.  An enhanced LPV-model based identification approach of oscillatory failure cases , 2012 .

[17]  Qinghua Zhang,et al.  Residual generation for fault diagnosis in linear time-varying systems , 2004, IEEE Trans. Autom. Control..

[18]  Alessandro Casavola,et al.  Fault Detection and Isolation of Electrical Induction Motors Via LPV Fault Observers , 2012 .

[19]  David Henry Structured fault detection filters for LPV systems modeled in an LFR manner , 2012 .

[20]  Paul M. Frank,et al.  Fault diagnosis in dynamic systems using analytical and knowledge-based redundancy: A survey and some new results , 1990, Autom..

[21]  R. Patton,et al.  Optimal filtering and robust fault diagnosis of stochastic systems with unknown disturbances , 1996 .

[22]  Bernd Krauskopf,et al.  Sensitivity of the Generic Transport Model upset dynamics to time delay , 2014 .

[23]  Pedro Casau,et al.  A set-valued approach to FDI and FTC: Theory and implementation issues , 2012 .

[24]  Rolf Isermann,et al.  Supervision, fault-detection and fault-diagnosis methods — An introduction , 1997 .

[25]  Cédric Join,et al.  Robust residual generation for linear fault diagnosis: an algebraic setting with examples , 2004 .

[26]  Michèle Basseville,et al.  Detection of Abrupt Changes in Signals and Dynamical Systems , 1985 .

[27]  Carlos Silvestre,et al.  Fault Detection and Isolation of LTV systems using Set-Valued Observers , 2010, 49th IEEE Conference on Decision and Control (CDC).

[28]  Vicenç Puig,et al.  Fault Detection and Isolation of a Real PEM Fuel Cell Using Interval LPV Observers , 2012 .

[29]  Denis Efimov,et al.  A LPV approach for early fault detection in aircraft control surfaces servo-loops , 2012 .

[30]  Jie Chen,et al.  Robust Model-Based Fault Diagnosis for Dynamic Systems , 1998, The International Series on Asian Studies in Computer and Information Science.

[31]  Andras Varga,et al.  On parametric solution of fault detection problems , 2011 .

[32]  M. Massoumnia A geometric approach to the synthesis of failure detection filters , 1986 .

[33]  Feng Ding,et al.  On the fault diagnosis of linear time-varying systems , 2005, IEEE International Conference Mechatronics and Automation, 2005.

[34]  Alberto Isidori,et al.  A geometric approach to nonlinear fault detection and isolation , 2000, IEEE Trans. Autom. Control..

[35]  Gary J. Balas,et al.  Detection filter design for LPV systems - a geometric approach , 2004, Autom..

[36]  Janos Gertler,et al.  Fault detection and diagnosis in engineering systems , 1998 .

[37]  Michel Kinnaert,et al.  Diagnosis and Fault-Tolerant Control , 2004, IEEE Transactions on Automatic Control.

[38]  Xiaobo Li,et al.  Fault detection for linear discrete time-varying systems , 2010, 49th IEEE Conference on Decision and Control (CDC).

[39]  W. H. Chung,et al.  A game theoretic fault detection filter , 1998, IEEE Trans. Autom. Control..

[40]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[41]  Qinghua Zhang From Adaptive Observers to Decoupled State and Parameter Estimations , 2009 .

[42]  Daniel Ossmann,et al.  Diagnosis of actuator faults using LPV-gain scheduling techniques , 2011 .

[43]  Alessandro Casavola,et al.  A fault-detection, filter-design method for linear parameter-varying systems , 2007 .

[44]  A. Willsky,et al.  A generalized likelihood ratio approach to the detection and estimation of jumps in linear systems , 1976 .

[45]  B. Jiang,et al.  NONLINEAR MODEL DECOMPOSITION FOR ROBUST FAULT DETECTION AND ISOLATION USING ALGEBRAIC TOOLS , 2006 .

[46]  József Bokor,et al.  Modeling Time Varying System Perturbations: Application to Robust Change Detection and Identification , 1993 .

[47]  Qing-Long Han,et al.  Parity Space-Based Fault Estimation for Linear Discrete Time-Varying Systems , 2010, IEEE Transactions on Automatic Control.

[48]  Steven X. Ding,et al.  Optimal fault detection for linear discrete time-varying systems , 2010, Autom..

[49]  A. Willsky,et al.  A generalized likelihood ratio approach to state estimation in linear systems subjects to abrupt changes , 1974, CDC 1974.

[50]  Fredrik Gustafsson,et al.  Adaptive filtering and change detection , 2000 .

[51]  Qinghua Zhang An adaptive observer for sensor fault estimation in linear time varying systems , 2005 .

[52]  Jan C. Willems,et al.  The Behavioral Approach to Linear Parameter-Varying Systems , 2011, IEEE Transactions on Automatic Control.

[53]  Robert H. Chen,et al.  A generalized least-squares fault detection filter , 2000 .

[54]  Rolf Isermann,et al.  Fault-diagnosis systems : an introduction from fault detection to fault tolerance , 2006 .

[55]  Xiaobo Li,et al.  A time domain approach to robust fault detection of linear time-varying systems , 2007, 2007 46th IEEE Conference on Decision and Control.

[56]  Inseok Hwang,et al.  A Survey of Fault Detection, Isolation, and Reconfiguration Methods , 2010, IEEE Transactions on Control Systems Technology.