Oncogenic ras Provokes Premature Cell Senescence Associated with Accumulation of p53 and p16INK4a

[1]  M. Barbacid ras genes. , 1987, Annual review of biochemistry.

[2]  A. Nordheim,et al.  Signalling pathways: Jack of all cascades , 1996, Current Biology.

[3]  A. Bielawska,et al.  Role of Ceramide in Cellular Senescence (*) , 1995, The Journal of Biological Chemistry.

[4]  L. Donehower,et al.  Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours , 1992, Nature.

[5]  G. Peters,et al.  Regulation of p16CDKN2 expression and its implications for cell immortalization and senescence , 1996, Molecular and cellular biology.

[6]  A. Levine,et al.  p53 alteration is a common event in the spontaneous immortalization of primary BALB/c murine embryo fibroblasts. , 1991, Genes & development.

[7]  T. Metz,et al.  Absence of p53 allows direct immortalization of hematopoietic cells by the myc and raf oncogenes , 1995, Cell.

[8]  T. Hunter Cooperation between oncogenes , 1991, Cell.

[9]  Remo Guidieri Res , 1995, RES: Anthropology and Aesthetics.

[10]  B. Franza,et al.  In vitro establishment is not a sufficient prerequisite for transformation by activated ras oncogenes , 1986, Cell.

[11]  Thierry Soussi,et al.  Somatic point mutations in the p53 gene of human tumors and cell lines: updated compilation , 1996, Nucleic Acids Res..

[12]  R. Reddel,et al.  Alterations in p53 and p16INK4 expression and telomere length during spontaneous immortalization of Li-Fraumeni syndrome fibroblasts , 1995, Molecular and cellular biology.

[13]  H. Ruley Transforming collaborations between ras and nuclear oncogenes. , 1990, Cancer cells.

[14]  G. Hannon,et al.  Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[15]  James M. Roberts,et al.  Inhibitors of mammalian G1 cyclin-dependent kinases. , 1995, Genes & development.

[16]  M. Loda,et al.  CDC25 phosphatases as potential human oncogenes. , 1995, Science.

[17]  Dulic,et al.  老化ヒト二倍体線維芽細胞におけるG1サイクリン調節の変化 不活性サイクリンE‐Cdk2及びサイクリンD1‐Cdk2複合体 , 1993 .

[18]  L. Donehower,et al.  In vitro growth characteristics of embryo fibroblasts isolated from p53-deficient mice. , 1993, Oncogene.

[19]  B. Sobel,et al.  Overexpression of plasminogen activator inhibitor type‐1 in senescent fibroblasts from normal subjects and those with Werner syndrome , 1994, Journal of cellular physiology.

[20]  D. Röhme Evidence for a relationship between longevity of mammalian species and life spans of normal fibroblasts in vitro and erythrocytes in vivo. , 1981, Proceedings of the National Academy of Sciences of the United States of America.

[21]  R. Weinberg,et al.  Function of a human cyclin gene as an oncogene. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[22]  J. R. Smith,et al.  Mitogenic effects of the proto-oncogene and oncogene forms of c-H-ras DNA in human diploid fibroblasts , 1986, Molecular and cellular biology.

[23]  R. DePinho,et al.  Inhibition of ras-induced proliferation and cellular transformation by p16INK4 , 1995, Science.

[24]  D. Bar-Sagi,et al.  Microinjection of the ras oncogene protein into PC12 cells induces morphological differentiation , 1985, Cell.

[25]  R. Weinberg,et al.  Tumor spectrum analysis in p53-mutant mice , 1994, Current Biology.

[26]  C. Prives,et al.  p53: puzzle and paradigm. , 1996, Genes & development.

[27]  S. Korsmeyer,et al.  bax-deficiency promotes drug resistance and oncogenic transformation by attenuating p53-dependent apoptosis. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[28]  R. Newbold,et al.  Fibroblast immortality is a prerequisite for transformation by EJ c-Ha-ras oncogene , 1983, Nature.

[29]  H. Ruley Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture , 1983, Nature.

[30]  G. Hannon,et al.  A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4 , 1993, Nature.

[31]  L. Chin,et al.  Role of the INK4a Locus in Tumor Suppression and Cell Mortality , 1996, Cell.

[32]  C. Marshall,et al.  Specificity of receptor tyrosine kinase signaling: Transient versus sustained extracellular signal-regulated kinase activation , 1995, Cell.

[33]  M. Yoshida,et al.  HTLV‐1 Tax protein interacts with cyclin‐dependent kinase inhibitor p16INK4A and counteracts its inhibitory activity towards CDK4. , 1996, The EMBO journal.

[34]  R. Weinberg,et al.  The retinoblastoma protein and cell cycle control , 1995, Cell.

[35]  Robert A. Weinberg,et al.  Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes , 1983, Nature.

[36]  W. Lee,et al.  Retinoblastoma protein and the cell cycle. , 1993, Current opinion in genetics & development.

[37]  G. Hannon,et al.  Cloning and characterization of murine p16INK4a and p15INK4b genes. , 1995, Oncogene.

[38]  M. Noble,et al.  Ras‐mediated cell cycle arrest is altered by nuclear oncogenes to induce Schwann cell transformation. , 1988, The EMBO journal.

[39]  R. Weinberg,et al.  Oncogenes, antioncogenes, and the molecular bases of multistep carcinogenesis. , 1989, Cancer research.

[40]  G. Margison,et al.  The in vitro lifespan of MRC-5 cells is shortened by 5-azacytidine-induced demethylation. , 1987, Experimental cell research.

[41]  S. Reed,et al.  Altered regulation of G1 cyclins in senescent human diploid fibroblasts: accumulation of inactive cyclin E-Cdk2 and cyclin D1-Cdk2 complexes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[42]  D. Beach,et al.  Cdc25 cell-cycle phosphatase as a target of c-myc , 1996, Nature.

[43]  H. Land,et al.  Advanced mammalian gene transfer: high titre retroviral vectors with multiple drug selection markers and a complementary helper-free packaging cell line. , 1990, Nucleic acids research.

[44]  J. Bartek,et al.  The p16-cyclin D/Cdk4-pRb pathway as a functional unit frequently altered in melanoma pathogenesis. , 1996, Cancer research.

[45]  C Roskelley,et al.  A biomarker that identifies senescent human cells in culture and in aging skin in vivo. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[46]  C. Reznikoff,et al.  Elevated p16 at senescence and loss of p16 at immortalization in human papillomavirus 16 E6, but not E7, transformed human uroepithelial cells. , 1996, Cancer research.

[47]  A. Balmain,et al.  Deletion and altered regulation of p16INK4a and p15INK4b in undifferentiated mouse skin tumors. , 1995, Cancer research.

[48]  M. Benito,et al.  Differentiation of 3T3-L1 fibroblasts to adipocytes induced by transfection of ras oncogenes. , 1991, Science.

[49]  J. Feramisco,et al.  Microinjection of the ras oncogene protein into nonestablished rat embryo fibroblasts. , 1986, Cancer research.

[50]  J. R. Smith,et al.  Cloning of senescent cell-derived inhibitors of DNA synthesis using an expression screen. , 1994, Experimental cell research.

[51]  M. Serrano,et al.  A p16INK4a-insensitive CDK4 mutant targeted by cytolytic T lymphocytes in a human melanoma , 1995, Science.

[52]  J. Campisi,et al.  Repression of c-fos transcription and an altered genetic program in senescent human fibroblasts. , 1990, Science.

[53]  P. Atadja,et al.  Increased activity of p53 in senescing fibroblasts. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Beach,et al.  Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. , 1993, Genes & development.

[55]  R. Hruban,et al.  Frequent somatic mutations and homozygous deletions of the p16 (MTS1) gene in pancreatic adenocarcinoma , 1994, Nature Genetics.

[56]  K. Kinzler,et al.  The multistep nature of cancer. , 1993, Trends in genetics : TIG.

[57]  L. Hayflick,et al.  The serial cultivation of human diploid cell strains. , 1961, Experimental cell research.

[58]  B. Howard,et al.  Human fibroblast commitment to a senescence-like state in response to histone deacetylase inhibitors is cell cycle dependent , 1996, Molecular and cellular biology.

[59]  S. Lowe,et al.  Stabilization of the p53 tumor suppressor is induced by adenovirus 5 E1A and accompanies apoptosis. , 1993, Genes & development.

[60]  S. Ng,et al.  Ras transformation results in an elevated level of cyclin D1 and acceleration of G1 progression in NIH 3T3 cells , 1995, Molecular and cellular biology.

[61]  H. Ruley,et al.  Rescue of cells from ras oncogene-induced growth arrest by a second, complementing, oncogene. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[62]  L. Donehower,et al.  Reduction of p53 gene dosage does not increase initiation or promotion but enhances malignant progression of chemically induced skin tumors , 1993, Cell.

[63]  D. Housman,et al.  Abrogation of oncogene-associated apoptosis allows transformation of p53-deficient cells. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[64]  J. Barrett,et al.  Genetic analysis of cellular senescence. , 1995, Biochimica et biophysica acta.

[65]  D. Housman,et al.  p53-dependent apoptosis modulates the cytotoxicity of anticancer agents , 1993, Cell.

[66]  James Brugarolas,et al.  Radiation-induced cell cycle arrest compromised by p21 deficiency , 1995, Nature.

[67]  K. Kinzler,et al.  Lessons from Hereditary Colorectal Cancer , 1996, Cell.

[68]  J. Bos,et al.  The ras gene family and human carcinogenesis. , 1988, Mutation research.

[69]  G. Stein,et al.  Origins of G1 arrest in senescent human fibroblasts , 1995, BioEssays : news and reviews in molecular, cellular and developmental biology.

[70]  J. Barrett,et al.  Investigation of the role of G1/S cell cycle mediators in cellular senescence. , 1993, Experimental cell research.

[71]  T. Taniguchi,et al.  Cellular commitment to oncogene-induced transformation or apoptosis is dependent on the transcription factor IRF-1 , 1994, Cell.

[72]  F. C. Lucibello,et al.  Oncogenic activity of cyclin D1 revealed through cooperation with Ha-ras: link between cell cycle control and malignant transformation. , 1994, Oncogene.

[73]  H. Koeffler,et al.  Role of the cyclin-dependent kinase inhibitors in the development of cancer. , 1995, Blood.

[74]  P. Higgins,et al.  Differential growth state‐dependent regulation of plasminogen activator inhibitor type‐1 expression in senescent IMR‐90 human diploid fibroblasts , 1995, Journal of cellular physiology.

[75]  R. Holliday Strong effects of 5-azacytidine on the in vitro lifespan of human diploid fibroblasts. , 1986, Experimental cell research.

[76]  G. Hicks,et al.  Mutant p53 tumor suppressor alleles release ras-induced cell cycle growth arrest , 1991, Molecular and cellular biology.