Achieving stabilization in interferometric logic operations.

Interferometric systems with amplitude beam splitters can implement reversible operations that, on detection, become Boolean operators. Being passive, they consume no energy, do not limit the operating bandwidth, and have negligible latency. Unfortunately, conventional interferometric systems are notoriously sensitive to uncontrolled disturbances. Here the use of polarization in a common-path interferometric logic gate with and without polarization beam splitters is explored as an attractive alternative to overcome those difficulties. Two of three device configurations considered offer significant stability and lower drive modulator voltage as advantages over the previous systems. The first experimental tests of such a system are reported. Common-path interferometry lends itself to even more stability and robustness by compatibility with no-air-gap, solid optics.