Continuous flow organic synthesis under high-temperature/pressure conditions.

Microreactor technology and continuous flow processing in general are key features in making organic synthesis both more economical and environmentally friendly. When preformed under a high-temperature/pressure process intensification regime many transformations originally not considered suitable for flow synthesis owing to long reaction times can be converted into high-speed flow chemistry protocols that can operate at production-scale quantities. This Focus Review summarizes the state of the art in high-temperature/pressure microreactor technology and provides a survey of successful applications of this technique from the recent synthetic organic chemistry literature.

[1]  Martyn Poliakoff,et al.  Continuous hydrogenation of organic compounds in supercriticalfluids , 1997 .

[2]  Qiubai Sun,et al.  Mini-review: green sustainable processes using supercritical fluid carbon dioxide. , 2009, Journal of environmental sciences.

[3]  S. Ley,et al.  A modular flow reactor for performing Curtius rearrangements as a continuous flow process. , 2008, Organic & biomolecular chemistry.

[4]  Mayuresh V. Kothare,et al.  A radial microfluidic fuel processor , 2005 .

[5]  Jeremy L. Steinbacher,et al.  Greener approaches to organic synthesis using microreactor technology. , 2007, Chemical reviews.

[6]  C. Kappe Kontrolliertes Erhitzen mit Mikrowellen in der modernen organischen Synthese , 2004 .

[7]  J. Dudas,et al.  Study of the pyrolysis of 2-pinanol in tubular and microreactor systems with reaction kinetics and modelling , 2009 .

[8]  Klavs F Jensen,et al.  Accelerating reactions with microreactors at elevated temperatures and pressures: profiling aminocarbonylation reactions. , 2007, Angewandte Chemie.

[9]  M. Goto,et al.  Decomposition and Oxidation of Aliphatic Nitro Compounds in Supercritical Water , 2004 .

[10]  Brian H Warrington,et al.  A Hantzsch synthesis of 2-aminothiazoles performed in a heated microreactor system. , 2002, Lab on a chip.

[11]  Steven V Ley,et al.  Microwave-assisted Suzuki coupling reactions with an encapsulated palladium catalyst for batch and continuous-flow transformations. , 2006, Chemistry.

[12]  C. Kappe,et al.  Controlled microwave heating in modern organic synthesis. , 2004, Angewandte Chemie.

[13]  Jürgen O. Metrger,et al.  Die -Spaltung von a-(Methoxycarbonyl)alkyl-Radikalen , 1990 .

[14]  Shin-ichi Tanaka,et al.  Large-scale synthesis of immunoactivating natural product, pristane, by continuous microfluidic dehydration as the key step. , 2007, Organic letters.

[15]  M. Menéndez,et al.  Synthesis of Maleic Anhydride in an Inert Membrane Reactor. Effect of Reactor Configuration , 2000 .

[16]  T. Fukuyama,et al.  A copper-free Sonogashira coupling reaction in ionic liquids and its application to a microflow system for efficient catalyst recycling. , 2002, Organic Letters.

[17]  M. Poliakoff,et al.  Is it Possible to Achieve Highly Selective Oxidations in Supercritical Water? Aerobic Oxidation of Methylaromatic Compounds , 2004 .

[18]  Ryan L Hartman,et al.  Microchemical systems for continuous-flow synthesis. , 2009, Lab on a chip.

[19]  J. Metzger,et al.  Thermal Pericyclic Reaction between Alkynes and Alkanes , 1979 .

[20]  J. Metzger,et al.  Thermally Initiated Free‐Radical Chain Addition of Alkanes to Alkynes, II. Kinetics of the Addition of Cyclohexane to Phenylethyne under Supercritical Fluid Conditions , 1994 .

[21]  Annegret Stark,et al.  Flow Chemistry of the Kolbe‐Schmitt Synthesis from Resorcinol: Process Intensification by Alternative Solvents, New Reagents and Advanced Reactor Engineering , 2009 .

[22]  D. Reinhoudt,et al.  Fabrication, mechanical testing and application of high-pressure glass microreactor chips , 2007 .

[23]  Gary R. List,et al.  Hydrolysis of soybean oil. in a subcritical water flow reactor , 1999 .

[24]  M. Poliakoff,et al.  Selective catalytic hydrogenation of organic compounds in supercritical fluids as a continuous process , 1998 .

[25]  Y. Matsumura,et al.  Behavior of 5-HMF in Subcritical and Supercritical Water , 2008 .

[26]  Gjergji Shore,et al.  Propargyl amine synthesis catalysed by gold and copper thin films by using microwave-assisted continuous-flow organic synthesis (MACOS). , 2010, Chemistry.

[27]  Paul Watts,et al.  Benchmarking of Microreactor Applications , 2004 .

[28]  J. Kremsner,et al.  Investigating the existence of nonthermal/specific microwave effects using silicon carbide heating elements as power modulators. , 2008, The Journal of organic chemistry.

[29]  Roshan Jeet Jee Jachuck,et al.  Process intensification: oxidation of benzyl alcohol using a continuous isothermal reactor under microwave irradiation , 2006 .

[30]  Jun-ichi Yoshida,et al.  Flash chemistry: fast chemical synthesis by using microreactors. , 2008, Chemistry.

[31]  C. Kappe,et al.  Practical Microwave Synthesis for Organic Chemists: Strategies, Instruments, and Protocols , 2009 .

[32]  M. Goto,et al.  Subcritical Water Reaction Behavior of D‐Glucose as a Model Compound for Biomass Using Two Different Continuous‐Flow Reactor Configurations , 2009 .

[33]  M. Selva,et al.  Continuous-flow, gas phase synthesis of 1-chlorobutane (1-bromobutane) from 1-butanol and aqueous HCl (HBr) over silica-supported quaternary phosphonium salt , 2005 .

[34]  C. Oliver Kappe,et al.  Mechanistic Insights into Copper(I)-Catalyzed Azide-Alkyne Cycloadditions using Continuous Flow Conditions , 2010 .

[35]  Shuiyu Lu,et al.  Synthesis of [F]fallypride in a micro-reactor: rapid optimization and multiple-production in small doses for micro-PET studies. , 2009, Current radiopharmaceuticals.

[36]  Volker Hessel,et al.  Sustainability through green processing – novel process windows intensify micro and milli process technologies , 2008 .

[37]  M. Kothare,et al.  A microreactor for hydrogen production in micro fuel cell applications , 2004, Journal of Microelectromechanical Systems.

[38]  Tobias Baier,et al.  Hermetic Gas‐tight Ceramic Microreactors , 2005 .

[39]  Russell Dahl,et al.  Rapid multistep synthesis of 1,2,4-oxadiazoles in a single continuous microreactor sequence. , 2008, The Journal of organic chemistry.

[40]  W. Vetter,et al.  [2]-[Cyclohexatetraoctane][cyclooctacosane]catenane, the First Hydrocarbon Catenane†‡ , 1983 .

[41]  N. Kockmann,et al.  Enabling continuous-flow chemistry in microstructured devices for pharmaceutical and fine-chemical production. , 2008, Chemistry.

[42]  J. Kremsner,et al.  Microwave-Assisted Catalyst-Free Transesterification of Triglycerides with 1-Butanol under Supercritical Conditions , 2008 .

[43]  Tao Wang,et al.  Continuous production of biodiesel fuel from vegetable oil using supercritical methanol process , 2007 .

[44]  Volker Hessel,et al.  Microreactor processing for the aqueous Kolbe-Schmitt synthesis of hydroquinone and phloroglucinol , 2007 .

[45]  P. Seeberger,et al.  5‐(Pyrrolidin‐2‐yl)tetrazol‐katalysierte Aldol‐ und Mannich‐Reaktionen: schnellere Reaktionen und niedrigere Katalysatorbeladung in einem Durchflussreaktor , 2009 .

[46]  Paul Watts,et al.  Continuous Flow Reactors, a Tool for the Modern Synthetic Chemist , 2008 .

[47]  Masahiro Sato,et al.  Rapid and highly selective copper-free sonogashira coupling in high-pressure, high-temperature water in a microfluidic system. , 2007, Angewandte Chemie.

[48]  H. Vogel,et al.  Hydrolysis of Nitriles in Supercritical Water , 1999 .

[49]  R. Eldik,et al.  High pressure chemistry : synthetic, mechanistic, and supercritical applications , 2002 .

[50]  N. Kockmann,et al.  Microreactor Technology and Continuous Processes in the Fine Chemical and Pharmaceutical Industry: Is the Revolution Underway? , 2008 .

[51]  B. Meyer,et al.  Darstellung ungesättigter Kohlenhydrate durch Esterpyrolyse, IV. Thermische cis‐Eliminierungen aus vollständig acetylierten Aldo‐ und Ketofuranosen , 1982 .

[52]  Duane R. Romer,et al.  Development of potential manufacturing routes for substituted thiophenes – Preparation of halogenated 2-thiophenecarboxylic acid derivatives as building blocks for a new family of 2,6-dihaloaryl 1,2,4-triazole insecticides , 2007, Beilstein journal of organic chemistry.

[53]  Christian H. Hornung,et al.  A Microcapillary Flow Disc Reactor for Organic Synthesis , 2007 .

[54]  Holger Löwe,et al.  Fluorinations, Chlorinations and Brominations of Organic Compounds in Micro Reactors , 2004 .

[55]  T. Fukuyama,et al.  Microflow radical carboaminoxylations with a novel alkoxyamine. , 2009, Organic letters.

[56]  David Anthony Barrow,et al.  Heck reactions using segmented flow conditions , 2009 .

[57]  P. He,et al.  Microwave heating of heterogeneously catalysed Suzuki reactions in a micro reactor. , 2004, Lab on a chip.

[58]  Holger Löwe,et al.  Aqueous Kolbe−Schmitt Synthesis Using Resorcinol in a Microreactor Laboratory Rig under High-p,T Conditions , 2005 .

[59]  C. Kappe,et al.  Heterogeneous versus homogeneous palladium catalysts for ligandless mizoroki-heck reactions: a comparison of batch/microwave and continuous-flow processing. , 2009, Chemistry.

[60]  James G. Stevens,et al.  The continuous self aldol condensation of propionaldehyde in supercritical carbon dioxide: a highly selective catalytic route to 2-methylpentenal , 2009 .

[61]  Chong Yan,et al.  The continuous synthesis of ε-caprolactam from 6-aminocapronitrile in high-temperature water , 2008 .

[62]  M. Poliakoff,et al.  The Continuous Acid-Catalyzed Dehydration of Alcohols in Supercritical Fluids: A New Approach to the Cleaner Synthesis of Acetals, Ketals, and Ethers with High Selectivity , 1999 .

[63]  N G Wilson,et al.  Microfabricated reactors for on-chip heterogeneous catalysis. , 2001, The Analyst.

[64]  J. Metzger,et al.  Der Einfluß polarer und sterischer Effekte auf die Selektivität der β‐Spaltung von Alkyl‐Radikalen , 1988 .

[65]  Study of the temperature field in microchannels of a PDMS chip with embedded local heater using temperature-dependent fluorescent dye , 2006 .

[66]  Yu‐Wen Chen,et al.  Effect of chromium promoter on copper catalysts in ethanol dehydrogenation , 1994 .

[67]  Paul Watts,et al.  Micro reactors: principles and applications in organic synthesis , 2002 .

[68]  Holger Löwe,et al.  Chemical micro process engineering : fundamentals, modelling and reactions , 2005 .

[69]  Gjergji Shore,et al.  Gold film-catalysed benzannulation by Microwave-Assisted, Continuous Flow Organic Synthesis (MACOS) , 2009, Beilstein journal of organic chemistry.

[70]  Jan Passchier,et al.  Rapid multiphase carbonylation reactions by using a microtube reactor: applications in positron emission tomography 11C-radiolabeling. , 2007, Angewandte Chemie.

[71]  Jonathan D. Moseley,et al.  A Comparison of Commercial Microwave Reactors for Scale-Up within Process Chemistry , 2008 .

[72]  C. Oliver Kappe,et al.  Microwave‐Assisted Synthesis under Continuous‐Flow Conditions , 2007 .

[73]  K. Jensen Microreaction engineering * is small better? , 2001 .

[74]  Yangchao Tian,et al.  Fabrication of ceramic microcomponents and microreactor for the steam reforming of ethanol , 2008 .

[75]  Masaaki Sato,et al.  Continuous microflow synthesis of butyl cinnamate by a Mizoroki-Heck reaction using a low-viscosity ionic liquid as the recycling reaction medium , 2004 .

[76]  J. Metzger,et al.  The Influence of Polar and Steric Effects on the Selectivity of the β-Cleavage of Alkyl Radicals† , 1988 .

[77]  J. Kobayashi,et al.  Multiphase organic synthesis in microchannel reactors. , 2006, Chemistry, an Asian journal.

[78]  C. Vogt,et al.  Palladium(0) Nanoparticles on Glass‐Polymer Composite Materials as Recyclable Catalysts: A Comparison Study on their Use in Batch and Continuous Flow Processes , 2008 .

[79]  O. Kajimoto,et al.  Rates of Claisen rearrangement determined with a flow-type high-temperature and high-pressure NMR probe , 2007 .

[80]  Amit Deshpande,et al.  Integrated Technology for Supercritical Biodiesel Production and Power Cogeneration , 2008 .

[81]  P. Seeberger,et al.  5-(Pyrrolidin-2-yl)tetrazole-catalyzed aldol and mannich reactions: acceleration and lower catalyst loading in a continuous-flow reactor. , 2009, Angewandte Chemie.

[82]  Holger Löwe,et al.  Development of Microstructured Reactors to Enable Organic Synthesis Rather than Subduing Chemistry , 2005 .

[83]  Philipp Rudolf von Rohr,et al.  Transparent silicon/glass microreactor for high-pressure and high-temperature reactions , 2008 .

[84]  B. Giese,et al.  Isoselective Relationship for the Stereoselectivity of the Transfer of Hydrogen Atoms to Cyclic Alkyl Radicals , 1991 .

[85]  Gjergji Shore,et al.  Catalysis in capillaries by Pd thin films using microwave-assisted continuous-flow organic synthesis (MACOS). , 2006, Angewandte Chemie.

[86]  Volker Hessel,et al.  Novel Process Windows – Gate to Maximizing Process Intensification via Flow Chemistry , 2009 .

[87]  P. A. Rice,et al.  Supercritical biodiesel production and power cogeneration: technical and economic feasibilities. , 2010, Bioresource technology.

[88]  Andreas Kirschning,et al.  Inductive heating for organic synthesis by using functionalized magnetic nanoparticles inside microreactors. , 2008, Angewandte Chemie.

[89]  C. Oliver Kappe,et al.  Microwave-assisted Dimroth Rearrangement of Thiazines to Dihydropyrimidinethiones: Synthetic and Mechanistic Aspects , 2006 .

[90]  Jurriaan Huskens,et al.  Nanostructure based on polymer brushes for efficient heterogeneous catalysis in microreactors. , 2009, Journal of the American Chemical Society.

[91]  Klavs F. Jensen,et al.  Supercritical Continuous‐Microflow Synthesis of Narrow Size Distribution Quantum Dots , 2008 .

[92]  R. S. Besser,et al.  Preferential oxidation (PrOx) in a thin-film catalytic microreactor: Advantages and limitations , 2005 .

[93]  L. Tavlarides,et al.  Oxidation of Aroclor 1248 in Supercritical Water: A Global Kinetic Study , 2000 .

[94]  M. Organ,et al.  Diels-Alder cycloadditions by microwave-assisted, continuous flow organic synthesis (MACOS): the role of metal films in the flow tube. , 2008, Chemical communications.

[95]  Michael G Organ,et al.  Multicomponent reactions to form heterocycles by microwave-assisted continuous flow organic synthesis. , 2007, Journal of combinatorial chemistry.

[96]  P. Licence,et al.  The automation of continuous reactions in supercritical CO2: the acid-catalysed etherification of short chain alcohols , 2005 .

[97]  Shiro Saka,et al.  Kinetics of hydrolysis and methyl esterification for biodiesel production in two-step supercritical methanol process , 2006 .

[98]  J. Kremsner,et al.  Silicon carbide passive heating elements in microwave-assisted organic synthesis. , 2006, The Journal of organic chemistry.

[99]  S. Woo,et al.  A plate-type reactor coated with zirconia-sol and catalyst mixture for methanol steam-reforming , 2005 .

[100]  Steven V. Ley,et al.  Continuous Flow Ligand-Free Heck Reactions Using Monolithic Pd [0] Nanoparticles , 2007 .

[101]  Dadan Kusdiana,et al.  Biodiesel fuel from rapeseed oil as prepared in supercritical methanol , 2001 .

[102]  Dietmar Malwitz,et al.  Thermisch induzierte Redoxreaktion von Carbonylverbindungen und Alkoholen in einer Radikalkettenreaktion: Komproportionierung zu zwei Hydroxyalkylradikalen , 1986 .

[103]  Steven V Ley,et al.  Microwave reactions under continuous flow conditions. , 2007, Combinatorial chemistry & high throughput screening.

[104]  Ricardo J. Bogaert-Alvarez,et al.  Continuous Processing to Control a Potentially Hazardous Process: Conversion of Aryl 1,1-Dimethylpropargyl Ethers to 2,2-Dimethylchromenes (2,2-Dimethyl-2H-1-Benzopyrans) , 2001 .

[105]  K. Jensen Silicon-Based Microreactors , 2005 .

[106]  Walter Leitner,et al.  Chemical synthesis using supercritical fluids , 1999 .

[107]  T. Wirth,et al.  Advanced organic synthesis using microreactor technology. , 2007, Organic & biomolecular chemistry.

[108]  Patrick Pouteau,et al.  Gas-liquid selective oxidations with oxygen under explosive conditions in a micro-structured reactor. , 2008, Lab on a chip.

[109]  Annegret Stark,et al.  Intensification of the Capillary-Based Kolbe−Schmitt Synthesis from Resorcinol by Reactive Ionic Liquids, Microwave Heating, or a Combination Thereof , 2009 .

[110]  J. Metzger,et al.  Thermischer Abbau von Cellulose und Chitin in überkritischem Aceton , 1978 .

[111]  Dominique M. Roberge,et al.  Microreactor Technology: A Revolution for the Fine Chemical and Pharmaceutical Industries? , 2005 .

[112]  C. Oliver Kappe,et al.  Continuous Flow Hydrogenation of Functionalized Pyridines , 2009 .

[113]  Martyn Poliakoff,et al.  Selective partial oxidation in supercritical water: the continuous generation of terephthalic acid from para-xylene in high yield , 2002 .

[114]  J. Metzger,et al.  Thermal Degradation of Cellulose and Chitin in Supercritical Acetone , 1978 .

[115]  S. Morin,et al.  Pd PEPPSI-IPr-mediated reactions in metal-coated capillaries under MACOS: the synthesis of indoles by sequential aryl amination/Heck coupling. , 2008, Chemistry.

[116]  J. R. Portela,et al.  Oxidation and Hydrolysis of Lactic Acid in Near-Critical Water , 1999 .

[117]  J. Metzger,et al.  Hochdruck-hochtemperatur-reaktionen in eineh strdmungsreaktor-VI. Thermische addition von alkanen an alkene , 1981 .

[118]  Dietmar Malwitz,et al.  Thermisch induzierte Redoxreaktion von Carbonylverbindungen und Alkoholen in einer Radikalkettenreaktion , 1986 .

[119]  Koichi Fujie,et al.  Reaction Kinetics of Amino Acid Decomposition in High-Temperature and High-Pressure Water , 2004 .

[120]  M. Liauw,et al.  Ceramic microreactors for heterogeneously catalysed gas-phase reactions. , 2004, Lab on a chip.

[121]  Robin Wood,et al.  A simple continuous flow microwave reactor. , 2005, The Journal of organic chemistry.

[122]  Michael J. Fasolka,et al.  Living anionic polymerization using a microfluidic reactor. , 2009, Lab on a chip.

[123]  Toma N. Glasnov,et al.  Accessing Novel Process Windows in a High-Temperature/Pressure Capillary Flow Reactor , 2009 .

[124]  Akira Igarashi,et al.  A miniaturized methanol reformer with Si-based microreactor for a small PEMFC , 2006 .

[125]  Mayuresh V. Kothare,et al.  Water Gas Shift Reaction in a glass microreactor , 2007 .

[126]  C. Kappe,et al.  Click chemistry under non-classical reaction conditions. , 2010, Chemical Society reviews.

[127]  M. Poliakoff,et al.  Organic reactions in high-temperature and supercritical water , 2006 .

[128]  Frank J. Villani,et al.  Application of Microreactor Technology in Process Development , 2004 .

[129]  J. Metzger Bildung von Alkylradikalen durch thermische bimolekulare Reaktion von Alkanen und Alkenen , 1983 .

[130]  J. C. Jansen,et al.  Method for the in situ preparation of a single layer of zeolite Beta crystals on a molybdenum substrate for microreactor applications , 2007 .

[131]  B. Hamper,et al.  Direct uncatalyzed amination of 2-chloropyridine using a flow reactor , 2007 .

[132]  Tom Van Gerven,et al.  Structure, energy, synergy, time - the fundamentals of Process Intensification , 2009 .

[133]  Michael A. Gonzalez,et al.  High Conversion, Solvent Free, Continuous Synthesis of Imidazolium Ionic Liquids In Spinning Tube-in-Tube Reactors , 2009 .

[134]  R. Chambers,et al.  Microreactors for elemental fluorine , 1999 .

[135]  Steven V Ley,et al.  Multi-step synthesis by using modular flow reactors: the preparation of yne--ones and their use in heterocycle synthesis. , 2010, Chemistry.

[136]  Christian Lammel,et al.  Induktives Heizen in der organischen Synthese durch Verwendung funktionalisierter magnetischer Nanopartikel in Mikroreaktoren , 2008 .

[137]  Klavs F. Jensen,et al.  Microfabricated packed‐bed reactor for phosgene synthesis , 2001 .

[138]  Eamon Comer,et al.  A microreactor for microwave-assisted capillary (continuous flow) organic synthesis. , 2005, Journal of the American Chemical Society.

[139]  Brian R. Moon,et al.  A CONTINUOUS PROCEDURE FOR PREPARATION OF para FUNCTION ALIZED AROMATIC THIOLS USING NEWMAN-KWART CHEMISTRY , 2000 .

[140]  P. Licence,et al.  Friedel−Crafts Alkylation of Anisole in Supercritical Carbon Dioxide: A Comparative Study of Catalysts , 2005 .

[141]  A. Gavriilidis,et al.  Oxidative dehydrogenation of 3-Methyl-2-buten-1-ol in microreactors , 2004 .

[142]  J. Metzger Thermisch initiierte Addition von Alkanen an Alkene. V. Addition von Cyclohexan an Oct‐1‐en in einer freien Radikalkettenreaktion unter überkritischen Bedingungen , 1990 .

[143]  Fernando Benito-Lopez,et al.  High pressure in organic chemistry on the way to miniaturization , 2008 .

[144]  Arkadij M Elizarov,et al.  Microreactors for radiopharmaceutical synthesis. , 2009, Lab on a chip.

[145]  M. Organ,et al.  Gold-film-catalysed hydrosilylation of alkynes by microwave-assisted, continuous-flow organic synthesis (MACOS). , 2008, Chemistry.

[146]  A. Jensen,et al.  Catalytic and gas–solid reactions involving HCN over limestone , 1997 .

[147]  P. Kenis,et al.  Ceramic microreactors for on-site hydrogen production , 2006 .

[148]  M. Poliakoff,et al.  Simultaneous continuous partial oxidation of mixed xylenes in supercritical water , 2005 .

[149]  Peter H Seeberger,et al.  Asymmetric reactions in continuous flow , 2009, Beilstein journal of organic chemistry.

[150]  Ulf Tilstam,et al.  The Newman−Kwart Rearrangement Revisited: Continuous Process under Supercritical Conditions† , 2009 .

[151]  Lingjie Kong,et al.  Efficient Claisen rearrangement of allyl para-substituted phenyl ethers using microreactors , 2009 .

[152]  L. Tavlarides,et al.  Oxidation of biphenyl in supercritical water: Reaction kinetics, key pathways, and main products , 2005 .

[153]  Victor Sans,et al.  Pd(0) supported onto monolithic polymers containing IL-like moieties. Continuous flow catalysis for the Heck reaction in near-critical EtOH. , 2006, Chemical communications.

[154]  Paul J A Kenis,et al.  Ceramic microreactors for on-site hydrogen production from high temperature steam reforming of propane. , 2006, Lab on a chip.

[155]  M. Arai,et al.  Innovation in a chemical reaction process using a supercritical water microreaction system: environmentally friendly production of epsilon-caprolactam. , 2002, Chemical communications.

[156]  Kunio Arai,et al.  Production of cellulose II from native cellulose by near- and supercritical water solubilization. , 2003, Journal of agricultural and food chemistry.

[157]  M. Poliakoff,et al.  Catalytic selective partial oxidations using O2 in supercriticalwater: the continuous synthesis of carboxylic acids , 2007 .

[158]  A novel continuous microfluidic reactor design for the controlled production of high-quality semiconductor nanocrystals , 2008 .

[159]  Peter H. Seeberger,et al.  Microreactor Synthesis of β‐Peptides , 2006 .

[160]  Willem Verboom,et al.  Selected Examples of High‐Pressure Reactions in Glass Microreactors , 2009 .

[161]  Andrew R. Bogdan,et al.  The Use of Copper Flow Reactor Technology for the Continuous Synthesis of 1,4‐Disubstituted 1,2,3‐Triazoles , 2009 .

[162]  Steven V Ley,et al.  Flow and batch mode focused microwave synthesis of 5-amino-4-cyanopyrazoles and their further conversion to 4-aminopyrazolopyrimidines. , 2007, Organic & biomolecular chemistry.

[163]  E. Dinjus,et al.  Methanol Reforming in Supercritical Water , 2003 .

[164]  J. Metzger,et al.  Isoselektivitätsbeziehung für die Stereoselektivität der Übertragung von Wasserstoffatomen auf cyclische Alkylradikale , 1991 .

[165]  C. Oliver Kappe,et al.  Continuous‐Flow Microreactor Chemistry under High‐Temperature/Pressure Conditions , 2009 .

[166]  Peter Licence,et al.  Chemical reactions in supercritical carbon dioxide: from laboratory to commercial plantThis work was presented at the Green Solvents for Catalysis Meeting held in Bruchsal, Germany, 13–16th October 2002. , 2003 .

[167]  V. Hessel,et al.  Comprar Micro Process Engineering : A Comprehensive Handbook | Volker Hessel | 9783527315505 | Wiley , 2009 .

[168]  Martyn Poliakoff,et al.  Supercritical hydrogenation and acid-catalysed reactions "without gases". , 2004, Chemical communications.

[169]  S. Ley,et al.  An efficient and transition metal free protocol for the transfer hydrogenation of ketones as a continuous flow process , 2009 .

[170]  Brian J. Krohn,et al.  A continuous catalytic system for biodiesel production , 2008 .

[171]  J. Metzger,et al.  Thermisch initiierte Addition von Alkanen an Alkene, II. Addition von Cyclohexan an Acrylester in einer freien Radikalkettenreaktion , 1986 .

[172]  L. Tavlarides,et al.  Methanol as a cosolvent and rate-enhancer for the oxidation kinetics of 3,3′,4,4′-tetrachlorobiphenyl decomposition in supercritical water , 2002 .

[173]  J. Metzger,et al.  Thermische pericyclische Reaktion zwischen Alkinen und Alkanen , 1979 .

[174]  M. Poliakoff,et al.  In situ generation of hydrogen for continuous hydrogenation reactions in high temperature water , 2006 .

[175]  David R. Miller,et al.  Quartz capillary microreactor for studies of oxidation in supercritical water , 2001 .

[176]  T. Turek,et al.  Flow through reactors for organic chemistry: directly electrically heated tubular mini reactors as an enabling technology for organic synthesis , 2009, Beilstein journal of organic chemistry.

[177]  Y. Ikushima,et al.  Highly-selective and high-speed Claisen rearrangement induced with subcritical water microreaction in the absence of catalyst , 2009 .

[178]  Richard I. Masel,et al.  Development of a microreactor for the production of hydrogen from ammonia , 2004 .

[179]  D. Seebach,et al.  Synthese von β‐Peptiden im Mikroreaktor , 2006 .

[180]  C. Oliver Kappe,et al.  Controlled microwave heating in modern organic synthesis: highlights from the 2004–2008 literature , 2009, Molecular Diversity.

[181]  C. Oliver Kappe,et al.  Translating High-Temperature Microwave Chemistry to Scalable Continuous Flow Processes , 2010 .

[182]  P. Hampton,et al.  Continuous Organic Synthesis in a Spinning Tube-in-Tube Reactor: TEMPO-Catalyzed Oxidation of Alcohols by Hypochlorite , 2008 .

[183]  M. Poliakoff,et al.  Continuous reactions in supercritical fluids; a cleaner, more selective synthesis of thymol in supercritical CO2 , 2005 .