Ecosystem dynamics based on plankton functional types for global ocean biogeochemistry models

Ecosystem processes are important determinants of the biogeochemistry of the ocean, and they can be profoundly affected by changes in climate. Ocean models currently express ecosystem processes through empirically derived parameterizations that tightly link key geochemical tracers to ocean physics. The explicit inclusion of ecosystem processes in models will permit ecological changes to be taken into account, and will allow us to address several important questions, including the causes of observed glacial–interglacial changes in atmospheric trace gases and aerosols, and how the oceanic uptake of CO2 is likely to change in the future. There is an urgent need to assess our mechanistic understanding of the environmental factors that exert control over marine ecosystems, and to represent their natural complexity based on theoretical understanding. We present a prototype design for a Dynamic Green Ocean Model (DGOM) based on the identification of (a) key plankton functional types that need to be simulated explicitly to capture important biogeochemical processes in the ocean; (b) key processes controlling the growth and mortality of these functional types and hence their interactions; and (c) sources of information necessary to parameterize each of these processes within a modeling framework. We also develop a strategy for model evaluation, based on simulation of both past and present mean state and variability, and identify potential sources of validation data for each. Finally, we present a DGOM‐based strategy for addressing key questions in ocean biogeochemistry. This paper thus presents ongoing work in ocean biogeochemical modeling, which, it is hoped will motivate international collaborations to improve our understanding of the role of the ocean in the climate system.

[1]  Timothy P. Boyer,et al.  World ocean database 2009 , 2006 .

[2]  Corinne Le Quéré,et al.  Role of Marine Biology in Glacial-Interglacial CO2 Cycles , 2005, Science.

[3]  A. Watson,et al.  Bio‐optical feedbacks among phytoplankton, upper ocean physics and sea‐ice in a global model , 2005 .

[4]  P. Tréguer,et al.  Growth physiology and fate of diatoms in the ocean: a review , 2005 .

[5]  Julie LaRoche,et al.  Importance of the diazotrophs as a source of new nitrogen in the ocean , 2005 .

[6]  P. Croot,et al.  Picophytoplankton - a comparative study of their biochemical composition and photosynthetic properties , 2005 .

[7]  B. L. Vu La biocalcification dans l'océan actuel à travers l'organisme modèle Emiliania huxleyi : quand la mer devient blanche , 2005 .

[8]  S. Alvaina,et al.  Remote sensing of phytoplankton groups in case 1 waters from global SeaWiFS imagery , 2005 .

[9]  Christiane Lancelot,et al.  Phaeocystis blooms in the global ocean and their controlling mechanisms: a review , 2005 .

[10]  C. D. Keeling,et al.  Interannual variability of the upper ocean carbon cycle at station ALOHA near Hawaii , 2004 .

[11]  J. Sarmiento,et al.  Oceanic ventilation and biogeochemical cycling: Understanding the physical mechanisms that produce realistic distributions of tracers and productivity , 2004 .

[12]  Scott C. Doney,et al.  Evaluating global ocean carbon models: The importance of realistic physics , 2004 .

[13]  U. Riebesell,et al.  Effect of trace metal availability on coccolithophorid calcification , 2004, Nature.

[14]  Richard A. Feely,et al.  Impact of Anthropogenic CO2 on the CaCO3 System in the Oceans , 2004, Science.

[15]  G. Gorsky,et al.  A vertical model of particle size distributions and fluxes in the midwater column that includes biological and physical processes—Part II: application to a three year survey in the NW Mediterranean Sea , 2004 .

[16]  Carlo Barbante,et al.  Eight glacial cycles from an Antarctic ice core , 2004, Nature.

[17]  Paul J. Valdes,et al.  Transient simulations of Holocene atmospheric carbon dioxide and terrestrial carbon since the Last Glacial Maximum , 2004 .

[18]  Matthew M. Mills,et al.  Iron and phosphorus co-limit nitrogen fixation in the eastern tropical North Atlantic , 2004, Nature.

[19]  T. Platt,et al.  Discrimination of diatoms from other phytoplankton using ocean-colour data , 2004 .

[20]  U. Riebesell,et al.  Polysaccharide aggregation as a potential sink of marine dissolved organic carbon , 2004, Nature.

[21]  John E Andrews,et al.  The Effects of Iron Fertilization on Carbon Sequestration in the Southern Ocean , 2004, Science.

[22]  Taro Takahashi,et al.  Southern Ocean Iron Enrichment Experiment: Carbon Cycling in High- and Low-Si Waters , 2004, Science.

[23]  William Miller,et al.  The decline and fate of an iron-induced subarctic phytoplankton bloom , 2004, Nature.

[24]  C. Hewitt,et al.  Sea surface temperature anomalies in the oceans at the LGM estimated from the alkenone‐U37K′ index: comparison with GCMs , 2004 .

[25]  S. Strom Novel interactions between phytoplankton and microzooplankton: their influence on the coupling between growth and grazing rates in the sea , 2002, Hydrobiologia.

[26]  J. Berry,et al.  A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species , 1980, Planta.

[27]  J. Yoder,et al.  Seasonal and ENSO variability in global ocean phytoplankton chlorophyll derived from 4 years of SeaWiFS measurements , 2003 .

[28]  R. Armstrong A hybrid spectral representation of phytoplankton growth and zooplankton response: The control rod model of plankton interaction , 2003 .

[29]  James W. Murray,et al.  Functional responses for zooplankton feeding on multiple resources: a review of assumptions and biological dynamics , 2003 .

[30]  Watson W. Gregg,et al.  Phytoplankton and iron: validation of a global three-dimensional ocean biogeochemical model , 2003 .

[31]  L. Stal,et al.  Temperature excludes N2-fixing heterocystous cyanobacteria in the tropical oceans , 2003, Nature.

[32]  E. Carpenter,et al.  Iron requirements for dinitrogen‐ and ammonium‐supported growth in cultures of Trichodesmium (IMS 101): Comparison with nitrogen fixation rates and iron: carbon ratios of field populations , 2003 .

[33]  M. Bender Climate‐biosphere interactions on glacial‐interglacial timescales , 2003 .

[34]  A. Hirst,et al.  Growth of marine planktonic copepods: Global rates and patterns in relation to chlorophyll a, temperature, and body weight , 2003 .

[35]  Margareth N. Kyewalyanga,et al.  Temperature as indicator of optical properties and community structure of marine phytoplankton: implications for remote sensing , 2003 .

[36]  Stéphane Blain,et al.  An ecosystem model of the global ocean including Fe, Si, P colimitations , 2003 .

[37]  R. Slater,et al.  Effects of patchy ocean fertilization on atmospheric carbon dioxide and biological production , 2003 .

[38]  A. Mishonov,et al.  Variability of phytoplankton and mesozooplankton biomass in the subtropical and tropical Atlantic Ocean , 2003 .

[39]  Robert W. Sterner,et al.  Are bacteria more like plants or animals? Growth rate and resource dependence of bacterial C : N : P stoichiometry , 2003 .

[40]  S. Doney,et al.  The Impact of Climate Change and Feedback Processes on the Ocean Carbon Cycle , 2003 .

[41]  P. Falkowski,et al.  Phytoplankton and Their Role in Primary, New, and Export Production , 2003 .

[42]  M. Fasham,et al.  Ocean biogeochemistry: the role of the ocean carbon cycle in global change , 2003 .

[43]  Corinne Le Quéré,et al.  Dust impact on marine biota and atmospheric CO2 in glacial periods , 2003 .

[44]  Reiner Schlitzer,et al.  Depth‐dependent elemental compositions of particulate organic matter (POM) in the ocean , 2003 .

[45]  C. D. Keeling,et al.  Interannual Variability in the North Atlantic Ocean Carbon Sink , 2002, Science.

[46]  Robert Frouin,et al.  Seasonal and inter‐annual variability of particulate organic matter in the global ocean , 2002 .

[47]  R. Schiebel Planktic foraminiferal sedimentation and the marine calcite budget , 2002 .

[48]  P. Van Cappellen,et al.  Biogenic silica dissolution in the oceans: Reconciling experimental and field‐based dissolution rates , 2002 .

[49]  R. Feely,et al.  Distribution of anthropogenic CO2 in the Pacific Ocean , 2002 .

[50]  P. Falkowski,et al.  Representing key phytoplankton functional groups in ocean carbon cycle models: Coccolithophorids , 2002 .

[51]  David Archer,et al.  Association of sinking organic matter with various types of mineral ballast in the deep sea: Implications for the rain ratio , 2002 .

[52]  Richard A. Krishfield,et al.  Factors controlling the flux of organic carbon to the bathypelagic zone of the ocean , 2002 .

[53]  R. Slater,et al.  A new estimate of the CaCO3 to organic carbon export ratio , 2002 .

[54]  Joanna Isobel House,et al.  Maximum impacts of future reforestation or deforestation on atmospheric CO2 , 2002 .

[55]  R. Stouffer,et al.  Comparison of palaeoclimate simulations enhances confidence in models , 2002 .

[56]  P. Burkill,et al.  Planktonic community structure and carbon cycling in the Arabian Sea as a result of monsoonal forcing: the application of a generic model , 2002 .

[57]  S. Doney,et al.  Modelling regional responses by marine pelagic ecosystems to global climate change , 2002 .

[58]  M. Heimann,et al.  Climate‐induced oceanic oxygen fluxes: Implications for the contemporary carbon budget , 2002 .

[59]  E. Carpenter,et al.  Iron and marine nitrogen fixation: progress and future directions. , 2002, Research in microbiology.

[60]  Dieter Wolf-Gladrow,et al.  Modeling the dissolution of settling CaCO3 in the ocean , 2002 .

[61]  P. C. Reid,et al.  Reorganization of North Atlantic Marine Copepod Biodiversity and Climate , 2002, Science.

[62]  I. C. Prentice,et al.  Climatic Control of the High-Latitude Vegetation Greening Trend and Pinatubo Effect , 2002, Science.

[63]  L. Bopp,et al.  Antarctic circumpolar wave impact on marine biology: A natural laboratory for climate change study , 2002 .

[64]  T. Kiørboe,et al.  Mortality of marine planktonic copepods: global rates and patterns , 2002 .

[65]  O. Aumont,et al.  Dimethylsulfoniopropionate (DMSP) and dimethylsulfide (DMS) sea surface distributions simulated from a global three-dimensional ocean carbon cycle model , 2002 .

[66]  J. Ruiz,et al.  Diatom aggregate formation and fluxes: a modeling analysis under different size-resolution schemes and with empirically determined aggregation kernels , 2002 .

[67]  L. Legendre,et al.  Roles of food web and heterotrophic microbial processes in upper ocean biogeochemistry: Global patterns and processes , 2002, Ecological Research.

[68]  K. Wallmann,et al.  Dissolution kinetics of biogenic silica from the water column to the sediments , 2002 .

[69]  J. Raven,et al.  NEW LIGHT ON THE SCALING OF METABOLIC RATE WITH THE SIZE OF ALGAE , 2002 .

[70]  R. Geider,et al.  Redfield revisited: variability of C:N:P in marine microalgae and its biochemical basis , 2002 .

[71]  Hugh L. MacIntyre,et al.  PHOTOACCLIMATION OF PHOTOSYNTHESIS IRRADIANCE RESPONSE CURVES AND PHOTOSYNTHETIC PIGMENTS IN MICROALGAE AND CYANOBACTERIA 1 , 2002 .

[72]  S. Levitus,et al.  World ocean database, 2001. Volume 1, Introduction , 2002 .

[73]  P. Burkill,et al.  Transformation of dimethylsulphoniopropionate to dimethyl sulphide during summer in the North Sea with an examination of key processes via a modelling approach , 2002 .

[74]  Jacqueline Boutin,et al.  Seasonal and interannual variability of CO2 in the equatorial Pacific , 2002 .

[75]  A. Hladky-Hennion,et al.  Cymbal and BB flat panel and conformal sonar arrays , 2002 .

[76]  R. Benner Chapter 3 – Chemical Composition and Reactivity , 2002 .

[77]  Reiner Schlitzer,et al.  Carbon export fluxes in the Southern Ocean: results from inverse modeling and comparison with satellite based estimates , 2002 .

[78]  C. Sweeney,et al.  Global sea-air CO2 flux based on climatological surface ocean pCO2, and seasonal biological and temperature effects , 2002 .

[79]  Scott C. Doney,et al.  Evaluation of ocean model ventilation with CFC-11: comparison of 13 global ocean models , 2002 .

[80]  H. Ploug Small‐scale oxygen fluxes and remineralization in sinking aggregates , 2001 .

[81]  D. Wolf-Gladrow,et al.  Carbonate dissolution in copepod guts: a numerical model , 2001 .

[82]  Hervé Claustre,et al.  Phytoplankton pigment distribution in relation to upper thermocline circulation in the eastern Mediterranean Sea during winter , 2001 .

[83]  Kitack Lee Global net community production estimated from the annual cycle of surface water total dissolved inorganic carbon , 2001 .

[84]  M. Ohman,et al.  Density-dependent mortality in an oceanic copepod population , 2001, Nature.

[85]  Andrew Hansen,et al.  Unicellular cyanobacteria fix N2 in the subtropical North Pacific Ocean , 2001, Nature.

[86]  Sandy P. Harrison,et al.  DIRTMAP: the geological record of dust , 2001 .

[87]  C. Gobler,et al.  Phosphorus limitation of nitrogen fixation by Trichodesmium in the central Atlantic Ocean , 2001, Nature.

[88]  U. Sommer,et al.  ALKALINE PHOSPHATASE ACTIVITIES AMONG POPULATIONS OF THE COLONY‐FORMING DIAZOTROPHIC CYANOBACTERIUM TRICHODESMIUM SPP. (CYANOBACTERIA) IN THE RED SEA , 2001 .

[89]  F. Woodward,et al.  Global response of terrestrial ecosystem structure and function to CO2 and climate change: results from six dynamic global vegetation models , 2001 .

[90]  Christopher B. Field,et al.  Biospheric Primary Production During an ENSO Transition , 2001, Science.

[91]  L. Legendre,et al.  Biogenic carbon cycling in the upper ocean: effects of microbial respiration. , 2001, Science.

[92]  Gurvan Madec,et al.  Potential impact of climate change on marine export production , 2001 .

[93]  H. Grossart,et al.  Microbial degradation of organic carbon and nitrogen on diatom aggregates , 2001 .

[94]  P. I. Miller,et al.  Spatial and temporal variability of particle flux at the N.W. European continental margin , 2001 .

[95]  N. Bates Interannual variability of oceanic CO2 and biogeochemical properties in the Western North Atlantic subtropical gyre , 2001 .

[96]  W. Berelson Particle settling rates increase with depth in the ocean , 2001 .

[97]  E. Carpenter,et al.  Detecting Trichodesmium blooms in SeaWiFS imagery , 2001 .

[98]  S. Doney,et al.  An intermediate complexity marine ecosystem model for the global domain , 2001 .

[99]  Robert J. Scholes,et al.  The Carbon Cycle and Atmospheric Carbon Dioxide , 2001 .

[100]  Reiner Schlitzer,et al.  Applying the Adjoint Method for Biogeochemical Modeling: Export of Participate Organic Matter in the World Ocean , 2013 .

[101]  Stephen Sitch,et al.  The Carbon Balance of the Terrestrial Biosphere: Ecosystem Models and Atmospheric Observations , 2000 .

[102]  A. Kettle,et al.  Flux of dimethylsulfide from the oceans: A comparison of updated data sets and flux models , 2000 .

[103]  F. Dentener,et al.  Interannual variability of atmospheric dimethylsulfide in the southern Indian Ocean , 2000 .

[104]  S. Naqvi,et al.  Increased marine production of N2O due to intensifying anoxia on the Indian continental shelf , 2000, Nature.

[105]  R. Betts,et al.  Acceleration of global warming due to carbon-cycle feedbacks in a coupled climate model , 2000, Nature.

[106]  Andrew J. Watson,et al.  A mesoscale phytoplankton bloom in the polar Southern Ocean stimulated by iron fertilization , 2000, Nature.

[107]  Ulf Riebesell,et al.  Reduced calcification of marine plankton in response to increased atmospheric CO2 , 2000, Nature.

[108]  D. Sigman,et al.  The δ15N of nitrate in the Southern Ocean: Nitrogen cycling and circulation in the ocean interior , 2000 .

[109]  M. Hildebrand,et al.  NITRATE TRANSPORTER GENES FROM THE DIATOM CYLINDROTHECA FUSIFORMIS (BACILLARIOPHYCEAE): mRNA LEVELS CONTROLLED BY NITROGEN SOURCE AND BY THE CELL CYCLE , 2000, Journal of phycology.

[110]  H. Grassl,et al.  Status and improvements of coupled general circulation models , 2000, Science.

[111]  C. Hillaire‐Marcel,et al.  Reconstruction of sea-surface temperature, salinity, and sea-ice cover in the northern North Atlantic during the last glacial maximum based on dinocyst assemblages , 2000 .

[112]  S. Doney,et al.  Iron supply and demand in the upper ocean , 2000 .

[113]  K. Johnson,et al.  A model of the iron cycle in the ocean , 2000 .

[114]  D. Slezak,et al.  Nutrient uptake and alkaline phosphatase (ec 3:1:3:1) activity of emiliania huxleyi (PRYMNESIOPHYCEAE) during growth under n and p limitation in continuous cultures , 2000 .

[115]  D. Jolly,et al.  Tropical climates at the Last Glacial Maximum: a new synthesis of terrestrial palaeoclimate data. I. Vegetation, lake-levels and geochemistry , 1999 .

[116]  G. Evans,et al.  Representing phytoplankton aggregates in biogeochemical models , 1999 .

[117]  William M. Balch,et al.  Biologically mediated dissolution of calcium carbonate above the chemical lysocline , 1999 .

[118]  S. Doney Major challenges confronting marine biogeochemical modeling , 1999 .

[119]  Toby Tyrrell,et al.  The relative influences of nitrogen and phosphorus on oceanic primary production , 1999, Nature.

[120]  A. Hirst,et al.  Climate change feedback on the future oceanic CO2 uptake , 1999 .

[121]  J. Jouzel,et al.  Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica , 1999, Nature.

[122]  Alan C. Mix,et al.  Foraminiferal faunal estimates of paleotemperature: Circumventing the No‐analog problem yields cool Ice Age tropics , 1999 .

[123]  M. D. Keller,et al.  DMSP synthesis and exudation in phytoplankton: a modeling approach , 1999 .

[124]  David M. Karl,et al.  A Sea of Change: Biogeochemical Variability in the North Pacific Subtropical Gyre , 1999, Ecosystems.

[125]  P. Falkowski,et al.  Bio‐optical properties of the marine diazotrophic cyanobacteria Trichodesmium spp. II. A reflectance model for remote sensing , 1999 .

[126]  F. Joos,et al.  Global warming and marine carbon cycle feedbacks on future atmospheric CO2 , 1999, Science.

[127]  R. Feely,et al.  Influence of El Niño on the equatorial Pacific contribution to atmospheric CO2 accumulation , 1999, Nature.

[128]  F. Azam,et al.  Accelerated dissolution of diatom silica by marine bacterial assemblages , 1999, Nature.

[129]  H. D. Baar,et al.  The Role of Iron in Plankton Ecology and Carbon Dioxide Transfer of the Global Oceans , 1999 .

[130]  G. Fischer,et al.  Clues to Ocean History: a Brief Overview of Proxies , 1999 .

[131]  E. Bard,et al.  TROPICAL SEA-SURFACE TEMPERATURES DURING THE LAST GLACIAL PERIOD : A VIEW BASED ON ALKENONES IN INDIAN OCEAN SEDIMENTS , 1998 .

[132]  A. Post,et al.  Alkaline phosphatase activities among planktonic communities in the northern Red Sea , 1998 .

[133]  Wallace S. Broecker,et al.  The sequence of events surrounding Termination II and their implications for the cause of glacial‐interglacial CO2 changes , 1998 .

[134]  X. Crosta,et al.  Reappraisal of Antarctic seasonal sea‐ice at the Last Glacial Maximum , 1998 .

[135]  P. Falkowski,et al.  Biogeochemical Controls and Feedbacks on Ocean Primary Production , 1998, Science.

[136]  W. Whitman,et al.  Prokaryotes: the unseen majority. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[137]  Richard J. Geider,et al.  A dynamic regulatory model of phytoplanktonic acclimation to light, nutrients, and temperature , 1998 .

[138]  P. deMenocal,et al.  Global deep-sea burial rate of calcium carbonate during the last glacial maximum , 1998 .

[139]  Syukuro Manabe,et al.  Simulated response of the ocean carbon cycle to anthropogenic climate warming , 1998, Nature.

[140]  P. Falkowski,et al.  Physiological stress and cell death in marine phytoplankton: Induction of proteases in response to nitrogen or light limitation , 1998 .

[141]  C. Brussaard,et al.  AUTOLYSIS KINETICS OF THE MARINE DIATOM DITYLUM BRIGHTWELLII (BACILLARIOPHYCEAE) UNDER NITROGEN AND PHOSPHORUS LIMITATION AND STARVATION 1 , 1997 .

[142]  C. Duarte,et al.  Biomass distribution in marine planktonic communities , 1997 .

[143]  R. Lignell,et al.  THEORETICAL MODELS FOR THE CONTROL OF BACTERIAL GROWTH RATE, ABUNDANCE, DIVERSITY AND CARBON DEMAND , 1997 .

[144]  Edward A. Boyle,et al.  What controls dissolved iron concentrations in the world ocean? — a comment , 1997 .

[145]  Paul G. Falkowski,et al.  Evolution of the nitrogen cycle and its influence on the biological sequestration of CO2 in the ocean , 1997, Nature.

[146]  P. Liss,et al.  Marine sulphur emissions , 1997 .

[147]  T. Kana,et al.  Dynamic model of phytoplankton growth and acclimation: responses of the balanced growth rate and the chlorophyll a:carbon ratio to light, nutrient-limitation and temperature , 1997 .

[148]  Katharina D. Six,et al.  Effects of plankton dynamics on seasonal carbon fluxes in an ocean general circulation model , 1996 .

[149]  Jorge L. Sarmiento,et al.  Oceanic Carbon Dioxide Uptake in a Model of Century-Scale Global Warming , 1996, Science.

[150]  E. Buitenhuis,et al.  Trends in inorganic and organic carbon in a bloom of Emiliania huxleyi in the North Sea , 1996 .

[151]  Raphael Kudela,et al.  A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean , 1996, Nature.

[152]  E. Maier‐Reimer,et al.  Future ocean uptake of CO2: interaction between ocean circulation and biology , 1996 .

[153]  W. Steffen A periodic table for ecology? A chemist's view of plant functional types , 1996 .

[154]  L. Legendre,et al.  Vertical Flux of Biogenic Carbon in the Ocean: Is There Food Web Control? , 1996, Science.

[155]  R. Jahnke,et al.  The global ocean flux of particulate organic carbon: Areal distribution and magnitude , 1996 .

[156]  L. Dijkhuizen,et al.  DMSP-LYASE ACTIVITY IN A SPRING PHYTOPLANKTON BLOOM OFF THE DUTCH COAST, RELATED TO PHAEOCYSTIS SP ABUNDANCE , 1995 .

[157]  P. Ruardij,et al.  The European regional seas ecosystem model, a complex marine ecosystem model , 1995 .

[158]  Alice L. Alldredge,et al.  Aggregation of a diatom bloom in a mesocosm: The role of transparent exopolymer particles (TEP) , 1995 .

[159]  Hervé Claustre,et al.  The trophic status of various oceanic provinces as revealed by phytoplankton pigment signatures , 1994 .

[160]  Roland Doerffer,et al.  Concentrations of chlorophyll, suspended matter, and gelbstoff in case II waters derived from satellite coastal zone color scanner data with inverse modeling methods , 1994 .

[161]  C. Brown,et al.  Coccolithophorid blooms in the global ocean , 1994 .

[162]  P. K. Bjørnsen,et al.  The size ratio between planktonic predators and their prey , 1994 .

[163]  D. Hartmann Global Physical Climatology , 1994 .

[164]  J. Milliman Production and accumulation of calcium carbonate in the ocean: Budget of a nonsteady state , 1993 .

[165]  E. Maier‐Reimer,et al.  Geochemical cycles in an Ocean General Circulation Model , 1993 .

[166]  J. Sarmiento,et al.  Ecosystem behavior at Bermuda Station “S” and ocean weather station “India”: A general circulation model and observational analysis , 1993 .

[167]  D. Wolf-Gladrow,et al.  The relationship between physical aggregation of phytoplankton and particle flux: a numerical model , 1992 .

[168]  J. Toggweiler,et al.  Downward transport and fate of organic matter in the ocean: Simulations with a general circulation model , 1992 .

[169]  J. Duplessy,et al.  Changes in the vertical structure of the North Atlantic Ocean between glacial and modern times , 1992 .

[170]  K. Banse Rates of phytoplankton cell division in the field and in iron enrichment experiments , 1991 .

[171]  W. Broecker Keeping global change honest , 1991 .

[172]  Trevor Platt,et al.  Biological control of surface temperature in the Arabian Sea , 1991, Nature.

[173]  R. A. Goldberg,et al.  Middle atmosphere electrical structure during MAC/EPSILON , 1990 .

[174]  George A. Jackson,et al.  A model of the formation of marine algal flocs by physical coagulation processes , 1990 .

[175]  J. M. Mitchell Climatic variability: Past, present, and future , 1990 .

[176]  J. M. MitchellJr. Climatic variability: Past, present, and future , 1990 .

[177]  A. Morel,et al.  Surface pigments, algal biomass profiles, and potential production of the euphotic layer: Relationships reinvestigated in view of remote‐sensing applications , 1989 .

[178]  C. Lorius,et al.  Vostok ice core provides 160,000-year record of atmospheric CO2 , 1987, Nature.

[179]  K. Hasselmann,et al.  Transport and storage of CO2 in the ocean ——an inorganic ocean-circulation carbon cycle model , 1987 .

[180]  W. Admiraal,et al.  Influence of phosphate depletion on the growth and colony formation of Phaeocystis pouchetii , 1987 .

[181]  G. Copin-Montégut,et al.  Stoichiometry of carbon, nitrogen, and phosphorus in marine particulate matter , 1983 .

[182]  S. Gorshkov,et al.  World ocean atlas , 1976 .

[183]  W. Richard,et al.  TEMPERATURE AND PHYTOPLANKTON GROWTH IN THE SEA , 1972 .

[184]  Climatic Control , 1911, Nature.

[185]  T. Frede,et al.  Theoretical models for the control of bacterial growth rate , abundance , diversity and carbon demand , 2022 .

[186]  M. Sakata,et al.  High-latitude controls of thermocline nutrients and low latitude biological productivity , 2022 .