Numerical computation of the free boundary for the two-dimensional Stefan problem by space-time finite elements

Abstract We describe a finite element method for the numerical solution of the two-dimensional Stefan problem. At each time step, the free boundary is approximated by a polygonal line whose vertices coincide with triangulation nodes. This is achieved by using space-time finite elements, which allow a change in the position of the nodes at each time step. Numerical results are given.

[1]  J. Lions INTRODUCTION TO SOME ASPECTS OF FREE SURFACE PROBLEMS , 1976 .

[2]  Anastas Lazaridis,et al.  A numerical solution of the multidimensional solidification (or melting) problem , 1970 .

[3]  A. Friedman Remarks on Stefan-Type Free Boundary Problems for Parabolic Equations , 1960 .

[4]  J. Lions Quelques méthodes de résolution de problèmes aux limites non linéaires , 1969 .

[5]  Gunter H. Meyer,et al.  On a free interface problem for linear ordinary differential equations and the one-phase Stefan problem , 1970 .

[6]  Jim Douglas,et al.  On the numerical integration of a parabolic differential equation subject to a moving boundary condition , 1955 .

[7]  P Jamet,et al.  A second order finite element method for the one‐dimensional Stefan problem , 1974 .

[8]  Pierre Jamet,et al.  Galerkin-type approximations which are discontinuous in time for parabolic equations in a variable domain , 1977 .

[9]  P. G. Ciarlet,et al.  Interpolation theory over curved elements, with applications to finite element methods , 1972 .

[10]  John Crank,et al.  A Method for Solving Moving Boundary Problems in Heat Flow using Cubic Splines or Polynomials , 1972 .

[11]  P Jamet,et al.  Numerical solution of the eulerian equations of compressible flow by a finite element method which follows the free boundary and the interfaces , 1975 .

[12]  Frost propagation in wet porous media , 1976 .

[13]  J. Crank,et al.  Isotherm Migration Method in two dimensions , 1975 .

[14]  J. Ciavaldini Analyse Numerique d’un Probleme de Stefan a Deux Phases Par une Methode d’Elements Finis , 1975 .

[15]  G. Meyer Multidimensional Stefan Problems , 1973 .

[16]  O. Zienkiewicz The Finite Element Method In Engineering Science , 1971 .