Interval-valued intuitionistic fuzzy implications - Construction, properties and representability

Abstract Firstly, this work studies the class of representable (co)implications obtained by idempotent aggregations and pair of dual interval functions, namely fuzzy implications and coimplications. Following the same construction, as the main contribution in the context of the interval-valued intuitionistic fuzzy logic, which is conceived by Atanassov, the class of representable Atanassov’s intuitionistic fuzzy implications is obtained by composition of idempotent interval aggregations and dual pairs of representable fuzzy implications and coimplications. Additionally, the conditions under which relevant properties of fuzzy implications and Atanassov’s intuitionistic fuzzy implications are preserved by such constructions are investigated. Furthermore, taking into account the projection functions and related (interval-valued) Atanassov’s intuitionistic fuzzy implications, it also shows that representable (interval-valued) Atanassov’s intuitionistic fuzzy implications preserve (degenerate) diagonal elements.

[1]  Pei Wang,et al.  Entropy, similarity measure of interval-valued intuitionistic fuzzy sets and their applications , 2011, Inf. Sci..

[2]  Radko Mesiar,et al.  Triangular Norms , 2000, Trends in Logic.

[3]  Bing Huang,et al.  Using a rough set model to extract rules in dominance-based interval-valued intuitionistic fuzzy information systems , 2013, Inf. Sci..

[4]  Krassimir T. Atanassov,et al.  Intuitionistic fuzzy sets , 1986 .

[5]  Stefan Friedrich,et al.  Topology , 2019, Arch. Formal Proofs.

[6]  M. H. van Emden,et al.  Interval arithmetic: From principles to implementation , 2001, JACM.

[7]  Benjamín R. C. Bedregal,et al.  Obtaining representable coimplications from aggregation and dual operators , 2011, EUSFLAT Conf..

[8]  Barbara Pekala,et al.  Properties of Atanassov's intuitionistic fuzzy relations and Atanassov's operators , 2012, Inf. Sci..

[9]  Chris Cornelis,et al.  On the representation of intuitionistic fuzzy t-norms and t-conorms , 2004, IEEE Transactions on Fuzzy Systems.

[10]  Michal Baczynski,et al.  Fuzzy Implications , 2008, Studies in Fuzziness and Soft Computing.

[11]  Shyi-Ming Chen,et al.  Multiattribute decision making based on interval-valued intuitionistic fuzzy values , 2012, Expert Syst. Appl..

[12]  Glad Deschrijver,et al.  A representation of t-norms in interval-valued L-fuzzy set theory , 2008, Fuzzy Sets Syst..

[13]  Dug Hun Hong,et al.  A note on correlation of interval-valued intuitionistic fuzzy sets , 1998, Fuzzy Sets Syst..

[14]  Humberto Bustince,et al.  A class of aggregation functions encompassing two-dimensional OWA operators , 2010, Inf. Sci..

[15]  Benjamín R. C. Bedregal,et al.  The best interval representations of t-norms and automorphisms , 2006, Fuzzy Sets Syst..

[16]  Chris Cornelis,et al.  Advances and challenges in interval-valued fuzzy logic , 2006, Fuzzy Sets Syst..

[17]  Shengyi Jiang,et al.  Relationships between entropy and similarity measure of interval-valued intuitionistic fuzzy sets , 2010 .

[18]  Yun Shi,et al.  On the characterizations of fuzzy implications satisfying I(x, y)=I(x, I(x, y)) , 2007, Inf. Sci..

[19]  V. Lakshmana Gomathi Nayagam,et al.  Ranking of interval-valued intuitionistic fuzzy sets , 2011, Appl. Soft Comput..

[20]  E. Walker,et al.  Some comments on interval valued fuzzy sets , 1996 .

[21]  J. Mendel Uncertain Rule-Based Fuzzy Logic Systems: Introduction and New Directions , 2001 .

[22]  G. Wei,et al.  Some Geometric Aggregation Operators Based on Interval-Valued Intuitionistic Fuzzy Sets and their Application to Group Decision Making , 2007 .

[23]  Michal Baczynski,et al.  (S, N)- and R-implications: A state-of-the-art survey , 2008, Fuzzy Sets Syst..

[24]  Etienne E. Kerre,et al.  Implicators based on binary aggregation operators in interval-valued fuzzy set theory , 2005, Fuzzy Sets Syst..

[25]  Deng-Feng Li,et al.  Extension principles for interval-valued intuitionistic fuzzy sets and algebraic operations , 2011, Fuzzy Optim. Decis. Mak..

[26]  Benjamín R. C. Bedregal,et al.  Interval Valued Fuzzy Coimplication , 2010, WoLLIC.

[27]  S. Gottwald Set theory for fuzzy sets of higher level , 1979 .

[28]  M. T. A. Osman,et al.  On the direct product of fuzzy subgroups , 1984 .

[29]  Chris Cornelis,et al.  Implication in intuitionistic fuzzy and interval-valued fuzzy set theory: construction, classification, application , 2004, Int. J. Approx. Reason..

[30]  Lotfi A. Zadeh,et al.  The Concepts of a Linguistic Variable and its Application to Approximate Reasoning , 1975 .

[31]  Humberto Bustince,et al.  An alternative to fuzzy methods in decision-making problems , 2012, Expert Syst. Appl..

[32]  Joan Torrens,et al.  A Survey on Fuzzy Implication Functions , 2007, IEEE Transactions on Fuzzy Systems.

[33]  Zun-Quan Xia,et al.  Intuitionistic fuzzy implication operators: Expressions and properties , 2006 .

[34]  George Gargov,et al.  Elements of intuitionistic fuzzy logic. Part I , 1998, Fuzzy Sets Syst..

[35]  K. Atanassov Operators over interval valued intuitionistic fuzzy sets , 1994 .

[36]  Joan Torrens,et al.  Residual implications and co-implications from idempotent uninorms , 2004, Kybernetika.

[37]  Deng-Feng Li,et al.  Mathematical-Programming Approach to Matrix Games With Payoffs Represented by Atanassov's Interval-Valued Intuitionistic Fuzzy Sets , 2010, IEEE Transactions on Fuzzy Systems.

[38]  Benjamín R. C. Bedregal,et al.  A Quasi-Metric Topology Compatible with Inclusion Monotonicity on Interval Space , 1997, Reliab. Comput..

[39]  Benjamín R. C. Bedregal,et al.  On interval fuzzy negations , 2010, Fuzzy Sets Syst..

[40]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[41]  Shu-Cherng Fang,et al.  A survey on fuzzy relational equations, part I: classification and solvability , 2009, Fuzzy Optim. Decis. Mak..

[42]  Benedito Melo Acióly,et al.  An Interval Metric , 2010 .

[43]  Shengyi Jiang,et al.  Some information measures for interval-valued intuitionistic fuzzy sets , 2010, Inf. Sci..

[44]  Benjamín R. C. Bedregal,et al.  On interval fuzzy S-implications , 2010, Inf. Sci..

[45]  Humberto Bustince,et al.  Automorphisms, negations and implication operators , 2003, Fuzzy Sets Syst..

[46]  Benjamín R. C. Bedregal,et al.  Formal Aspects of Correctness and Optimality of Interval Computations , 2006, Formal Aspects of Computing.

[47]  Benjamín R. C. Bedregal,et al.  Interval-valued fuzzy coimplications and related dual interval-valued conjugate functions , 2014, J. Comput. Syst. Sci..

[48]  Vicenç Torra Aggregation operators and models , 2005, Fuzzy Sets Syst..

[49]  Humberto Bustince,et al.  Intuitionistic Fuzzy Implication Operators - An Expression And Main Properties , 2004, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[50]  Zeshui Xu,et al.  A method based on distance measure for interval-valued intuitionistic fuzzy group decision making , 2010, Inf. Sci..

[51]  Etienne E. Kerre,et al.  Aggregation Operators in Interval-valued Fuzzy and Atanassov's Intuitionistic Fuzzy Set Theory , 2008, Fuzzy Sets and Their Extensions: Representation, Aggregation and Models.

[52]  Qiang Zhang,et al.  Intuitionistic fuzzy-valued Choquet integral and its application in multicriteria decision making , 2013, Inf. Sci..

[53]  Lotfi A. Zadeh,et al.  The concept of a linguistic variable and its application to approximate reasoning-III , 1975, Inf. Sci..

[54]  Humberto Bustince,et al.  Aggregation for Atanassov’s Intuitionistic and Interval Valued Fuzzy Sets: The Median Operator , 2012, IEEE Transactions on Fuzzy Systems.

[55]  Didier Dubois,et al.  Random sets and fuzzy interval analysis , 1991 .

[56]  H. Bustince,et al.  Generation of interval-valued fuzzy and atanassov's intuitionistic fuzzy connectives from fuzzy connectives and from K α operators: Laws for conjunctions and disjunctions, amplitude , 2008 .

[57]  Bernard De Baets,et al.  Commutativity and self-duality: Two tales of one equation , 2009, Int. J. Approx. Reason..

[58]  Yingjun Zhang,et al.  Multiple attribute decision making method in the frame of interval-valued intuitionistic fuzzy sets , 2011, 2011 Eighth International Conference on Fuzzy Systems and Knowledge Discovery (FSKD).

[59]  Etienne E. Kerre,et al.  Smets-magrez Axioms for R-implicators in Interval-valued and Intuitionistic Fuzzy Set Theory , 2005, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[60]  Humberto Bustince,et al.  Generalized Atanassov's Intuitionistic Fuzzy Index. Construction Method , 2009, IFSA/EUSFLAT Conf..

[61]  Marc Roubens,et al.  Fuzzy Preference Modelling and Multicriteria Decision Support , 1994, Theory and Decision Library.