Printing spatially-varying reflectance

Although real-world surfaces can exhibit significant variation in materials --- glossy, diffuse, metallic, etc. --- printers are usually used to reproduce color or gray-scale images. We propose a complete system that uses appropriate inks and foils to print documents with a variety of material properties. Given a set of inks with known Bidirectional Reflectance Distribution Functions (BRDFs), our system automatically finds the optimal linear combinations to approximate the BRDFs of the target documents. Novel gamut-mapping algorithms preserve the relative glossiness between different BRDFs, and halftoning is used to produce patterns to be sent to the printer. We demonstrate the effectiveness of this approach with printed samples of a number of measured spatially-varying BRDFs.

[1]  Shree K. Nayar,et al.  Radiometric self calibration , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[2]  Edward H. Adelson,et al.  How do Humans Determine Reflectance Properties under Unknown Illumination , 2001, CVPR 2001.

[3]  Roger D. Hersch,et al.  Color images visible under UV light , 2007, SIGGRAPH 2007.

[4]  Gregory J. Ward,et al.  Measuring and modeling anisotropic reflection , 1992, SIGGRAPH.

[5]  Jan Kautz,et al.  Interactive rendering with arbitrary BRDFs using separable approximations , 1999, SIGGRAPH '99.

[6]  Robert Ulichney,et al.  Digital Halftoning , 1987 .

[7]  Luiz Velho,et al.  Digital halftoning with space filling curves , 1991, SIGGRAPH.

[8]  Steve Marschner,et al.  Image-Based BRDF Measurement Including Human Skin , 1999, Rendering Techniques.

[9]  Robert L. Cook,et al.  A Reflectance Model for Computer Graphics , 1987, TOGS.

[10]  Peter Shirley,et al.  A microfacet-based BRDF generator , 2000, SIGGRAPH.

[11]  Donald P. Greenberg,et al.  Toward a psychophysically-based light reflection model for image synthesis , 2000, SIGGRAPH.

[12]  Szymon Rusinkiewicz,et al.  A New Change of Variables for Efficient BRDF Representation , 1998, Rendering Techniques.

[13]  David Salesin,et al.  Reproducing color images using custom inks , 1998, SIGGRAPH.

[14]  Patrick Emmel,et al.  Reproducing color images with embedded metallic patterns , 2003, ACM Trans. Graph..

[15]  Pheng-Ann Heng,et al.  Structure-aware halftoning , 2008, SIGGRAPH 2008.

[16]  Steven M. Seitz,et al.  Shape and Spatially-Varying BRDFs from Photometric Stereo , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Wojciech Matusik,et al.  Inverse shade trees for non-parametric material representation and editing , 2006, SIGGRAPH 2006.

[18]  Frédo Durand,et al.  Experimental analysis of BRDF models , 2005, EGSR '05.

[19]  Frédo Durand,et al.  Image-driven navigation of analytical BRDF models , 2006, EGSR '06.

[20]  Shree K. Nayar,et al.  Reflectance and texture of real-world surfaces , 1999, TOGS.

[21]  Donald P. Greenberg,et al.  Non-linear approximation of reflectance functions , 1997, SIGGRAPH.

[22]  Michael D. McCool,et al.  Homomorphic factorization of BRDFs for high-performance rendering , 2001, SIGGRAPH.

[23]  Bui Tuong Phong Illumination for computer generated pictures , 1975, Commun. ACM.

[24]  Victor Ostromoukhov,et al.  A simple and efficient error-diffusion algorithm , 2001, SIGGRAPH.

[25]  Henry R. Kang Digital Color Halftoning , 1999 .

[26]  Andrew Gardner,et al.  Linear light source reflectometry , 2003, ACM Trans. Graph..

[27]  Hans-Peter Seidel,et al.  Image-based reconstruction of spatial appearance and geometric detail , 2003, TOGS.

[28]  K. Torrance,et al.  Theory for off-specular reflection from roughened surfaces , 1967 .

[29]  Anselmo Lastra,et al.  A generalized surface appearance representation for computer graphics , 2002 .

[30]  R. Ramamoorthi,et al.  Frequency domain normal map filtering , 2007, SIGGRAPH 2007.

[31]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..