The semiclassical limit of a quantum Zeno dynamics

Motivated by a quantum Zeno dynamics in a cavity quantum electrodynamics setting, we study the asymptotics of a family of symbols corresponding to a truncated momentum operator, in the semiclassical limit of vanishing Planck constant $\hbar\to0$ and large quantum number $N\to\infty$, with $\hbar N$ kept fixed. In a suitable topology, the limit is the discontinuous symbol $p\chi_D(x,p)$ where $\chi_D$ is the characteristic function of the classically permitted region $D$ in phase space. A refined analysis shows that the symbol is asymptotically close to the function $p\chi_D^{(N)}(x,p)$, where $\chi_D^{(N)}$ is a smooth version of $\chi_D$ related to the integrated Airy function. We also discuss the limit from a dynamical point of view.

[1]  Gaultier Lambert,et al.  Universality for free fermions and the local Weyl law for semiclassical Schr\"odinger operators , 2021, 2109.02121.

[2]  P. Exner,et al.  Note on a Product Formula Related to Quantum Zeno Dynamics , 2021, Annales Henri Poincaré.

[3]  P. Exner,et al.  A Product Formula Related to Quantum Zeno Dynamics , 2003, Annales Henri Poincaré.

[4]  S. Majumdar,et al.  Noninteracting fermions in a trap and random matrix theory , 2018, Journal of Physics A: Mathematical and Theoretical.

[5]  S. Majumdar,et al.  Wigner function of noninteracting trapped fermions , 2018, Physical Review A.

[6]  F. Mezzadri,et al.  Free Fermions and the Classical Compact Groups , 2017, Journal of statistical physics.

[7]  F. Bornemann On the Scaling Limits of Determinantal Point Processes with Kernels Induced by Sturm-Liouville Operators , 2011, 1104.0153.

[8]  Stephanie Koch,et al.  Harmonic Analysis In Phase Space , 2016 .

[9]  D. Romik The Surprising Mathematics of Longest Increasing Subsequences , 2015 .

[10]  V. Eisler Universality in the full counting statistics of trapped fermions. , 2013, Physical review letters.

[11]  T. Paul,et al.  On the Selection of the Classical Limit for Potentials With BV Derivatives , 2012, 1201.5622.

[12]  L. Glazman,et al.  Quantum ripples over a semiclassical shock. , 2012, Physical review letters.

[13]  B. Peaudecerf,et al.  Quantum Zeno dynamics of a field in a cavity , 2012, 1207.6499.

[14]  E. Bettelheim,et al.  Universal Fermi distribution of semiclassical nonequilibrium Fermi states , 2011, 1104.1854.

[15]  T. Paul,et al.  Semiclassical limit for mixed states with singular and rough potentials , 2010, 1012.2483.

[16]  S. Gleyzes,et al.  Phase space tweezers for tailoring cavity fields by quantum Zeno dynamics. , 2010, Physical review letters.

[17]  T. Paul,et al.  Semiclassical limit of quantum dynamics with rough potentials and well‐posedness of transport equations with measure initial data , 2010, 1006.5388.

[18]  P. Facchi,et al.  Quantum Zeno effect and dynamics , 2009, 0911.2201.

[19]  W. Arendt,et al.  Trotter's product formula for projections , 2010 .

[20]  Chase E. Zachary,et al.  Point processes in arbitrary dimension from fermionic gases, random matrix theory, and number theory , 2008, 0809.0449.

[21]  Barry Simon,et al.  The Christoffel-Darboux Kernel , 2008, 0806.1528.

[22]  B. Simon Weak convergence of CD kernels and applications , 2007, 0707.2578.

[23]  P. Vitale,et al.  The fuzzy disc: a review , 2006 .

[24]  Y. Peres,et al.  Determinantal Processes and Independence , 2005, math/0503110.

[25]  Rene F. Swarttouw,et al.  Orthogonal Polynomials , 2005, Series and Products in the Development of Mathematics.

[26]  V. Zagrebnov,et al.  Zeno Product Formula Revisited , 2004, math-ph/0411036.

[27]  I. Krasikov New bounds on the Hermite polynomials , 2004, math/0401310.

[28]  P. Vitale,et al.  The fuzzy disc , 2003, hep-th/0306247.

[29]  A. Schmidt Zeno dynamics in quantum statistical mechanics , 2002, math-ph/0207013.

[30]  A. U. Schmidt Zeno dynamics of von Neumann algebras , 2002, math-ph/0203008.

[31]  T. Curtright,et al.  Generating All Wigner Functions , 2000, hep-th/0011137.

[32]  P. Deift Orthogonal Polynomials and Random Matrices: A Riemann-Hilbert Approach , 2000 .

[33]  E. Sudarshan,et al.  Quantum Zeno dynamics: mathematical and physical aspects , 2000, quant-ph/0004040.

[34]  T. Paul,et al.  Sur les mesures de Wigner , 1993 .

[35]  C. Tracy,et al.  Introduction to Random Matrices , 1992, hep-th/9210073.

[36]  C. Tracy,et al.  Level-spacing distributions and the Airy kernel , 1992, hep-th/9210074.

[37]  Y. Ohnuki,et al.  Irreducible Representations of the Poincaré Group , 1988 .

[38]  D. Robert Autour de l'approximation semi-classique , 1987 .

[39]  P. Exner Open Quantum Systems And Feynman Integrals , 1984 .

[40]  Karl Gustafson,et al.  Canonical commutation relations of quantum mechanics and stochastic regularity , 1976 .

[41]  E. Sudarshan,et al.  Zeno's paradox in quantum theory , 1976 .

[42]  P. Chernoff Product formulas, nonlinear semigroups, and addition of unbounded operators , 1974 .

[43]  A. Beskow,et al.  CONCEPT OF WAVE FUNCTION AND THE IRREDUCIBLE REPRESENTATIONS OF THE POINCARE GROUP. II. UNSTABLE SYSTEMS AND THE EXPONENTIAL DECAY LAW. , 1967 .

[44]  H. Trotter On the product of semi-groups of operators , 1959 .

[45]  H. Trotter Approximation of semi-groups of operators , 1958 .

[46]  H. J. Groenewold On the Principles of Elementary Quantum Mechanics , 1946 .