On the existence and uniqueness of limit cycles for generalized Liénard systems

Abstract In this paper, we consider a generalized Lienard system d x d t = ϕ ( y ) − F ( x ) , (0.1) d y d t = − g ( x ) , where F is continuous and differentiable on an open interval ( b 1 , a 1 ) with − ∞ ⩽ b 1 0 a 1 ⩽ + ∞ . Assume that there exist a and b with b 1 b 0 a a 1 such that x F ( x ) 0 as b x a , and x F ( x ) > 0 as a x a 1 or b 1 x b . A new uniqueness theorem of limit cycles for the Lienard system (0.1) is obtained. An example is given to show the application of the theorem.

[1]  Zhang Zhifen,et al.  Proof of the uniqueness theorem of limit cycles of generalized liénard equations , 1986 .

[2]  Nicola Sottocornola,et al.  Robust homoclinic cycles in Bbb R4 , 2003 .

[3]  Roberto Conti,et al.  Non-linear differential equations , 1966 .

[4]  Y. Kuang Nonuniqueness of Limit Cycles of Gause-Type Predator-Prey Systems , 1988 .

[5]  W. A. Coppel Some Quadratic Systems with at most One Limit Cycle , 1989 .

[6]  Yang Kuang,et al.  Uniqueness of limit cycles in Gause-type models of predator-prey systems , 1988 .

[7]  Dongmei Xiao,et al.  On the uniqueness and nonexistence of limit cycles for predator?prey systems , 2003 .

[8]  Tzy-Wei Hwang,et al.  Uniqueness of the Limit Cycle for Gause-Type Predator–Prey Systems , 1999 .

[9]  Chih-fen Chang,et al.  Qualitative Theory of Differential Equations , 1992 .

[10]  Zhang Zhi-fen,et al.  On the Uniqueness of the Limit Cycle of the Generalized Liénard Equation , 1994 .

[11]  T. Carletti,et al.  A note on existence and uniqueness of limit cycles for Liénard systems , 2003, math/0307372.

[12]  Marco Sabatini,et al.  Limit cycle uniqueness for a class of planar dynamical systems , 2006, Appl. Math. Lett..

[13]  W. Roberts Solution du problême , 1861 .

[14]  Shigui Ruan,et al.  Global Analysis in a Predator-Prey System with Nonmonotonic Functional Response , 2001, SIAM J. Appl. Math..

[15]  G. Sansone Sopra l'equazione di A. Liénard delle oscillazioni di rilassamento , 1949 .