On the Local Super-Linear Convergence of a Matrix Secant Implementation of the Variable Metric Proximal Point Algorithm for Monotone Operators

Interest in the variable metric proximal point algorithm (VMPPA) is fueled by the desire to accelerate the local convergence of the proximal point algorithm without requiring the divergence of the proximation parameters. In this paper, the local convergence theory for matrix secant versions of the VMPPA is applied to a known globally convergent version of the algorithm. It is shown under appropriate hypotheses that the resulting algorithms are locally super-linearly convergent when executed with the BFGS and the Broyden matrix secant updates. This result unifies previous work on the global and local convergence theory for this class of algorithms. It is the first result applicable to general monotone operators showing that a globally convergent VMPPA with bounded proximation parameters can be accelerated using matrix secant techniques. This result clears the way for the direct application of these methods to constrained and non-finite-valued convex programming. Numerical experiments are included illustrating the potential gains of the method and issues for further study.

[1]  G. Minty Monotone (nonlinear) operators in Hilbert space , 1962 .

[2]  J. Moreau Proximité et dualité dans un espace hilbertien , 1965 .

[3]  R. Tyrrell Rockafellar,et al.  Augmented Lagrangians and Applications of the Proximal Point Algorithm in Convex Programming , 1976, Math. Oper. Res..

[4]  A “Conjugate” Interior Penalty Method for Certain Convex Programs , 1977 .

[5]  Klaus Schittkowski,et al.  More test examples for nonlinear programming codes , 1981 .

[6]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[7]  Paul H. Calamai,et al.  A new technique for generating quadratic programming test problems , 1993, Math. Program..

[8]  Claude Lemaréchal,et al.  An approach to variable metric bundle methods , 1993, System Modelling and Optimization.

[9]  J. Frédéric Bonnans,et al.  A family of variable metric proximal methods , 1995, Math. Program..

[10]  Masao Fukushima,et al.  A Globally and Superlinearly Convergent Algorithm for Nonsmooth Convex Minimization , 1996, SIAM J. Optim..

[11]  Claude Lemaréchal,et al.  Variable metric bundle methods: From conceptual to implementable forms , 1997, Math. Program..

[12]  Robert Mifflin,et al.  A quasi-second-order proximal bundle algorithm , 1996, Math. Program..

[13]  Xiaojun Chen,et al.  A preconditioning proximal newton method for nondifferentiable convex optimization , 1997, Math. Program..

[14]  Defeng Sun,et al.  Quasi-Newton Bundle-Type Methods for Nondifferentiable Convex Optimization , 1998, SIAM J. Optim..

[15]  J. Burke,et al.  A Variable Metric Proximal Point Algorithm for Monotone Operators , 1999 .

[16]  Xiaojun Chen,et al.  Proximal quasi-Newton methods for nondifferentiable convex optimization , 1999, Math. Program..

[17]  James V. Burke,et al.  On the superlinear convergence of the variable metric proximal point algorithm using Broyden and BFGS matrix secant updating , 2000, Math. Program..