A New Color Feature Extraction Method Based on QuadHistogram

Abstract One of the important requirements in image retrieval, indexing, classification, clustering and etc. is extracting efficient features from images. The color feature is one of the most widely used visual features. Use of color histogram is the most common way for representing color feature. In this paper color features extraction based on QuadHistogram is presented. The quadtree decomposition is applied on the images and homogenous blocks with different size are specified. Color histogram and complexity of blocks of the same size are extracted. The image retrieval results in compare to global color histogram show the acceptable efficiency of this approach.

[1]  Hussein M. Abdel-Wahab,et al.  Scalable and robust image compression using quadtrees , 1999, Signal Process. Image Commun..

[2]  Linh Viet Tran,et al.  Efficient Image Retrieval with Statistical Color Descriptors , 2003 .

[3]  Guojun Lu,et al.  Spatial statistics for content based image retrieval , 2003, Proceedings ITCC 2003. International Conference on Information Technology: Coding and Computing.

[4]  Ramin Zabih,et al.  Comparing images using color coherence vectors , 1997, MULTIMEDIA '96.

[5]  Linda G. Shapiro,et al.  Computer Vision , 2001 .

[6]  Jon Louis Bentley,et al.  Quad trees a data structure for retrieval on composite keys , 1974, Acta Informatica.

[7]  Chin-Yi Liu,et al.  Object Feature Extraction for Image Retrieval Based on Quadtree Segmented Blocks , 2009, 2009 WRI World Congress on Computer Science and Information Engineering.

[8]  Jiangtao Cui,et al.  Image retrieval based on color distribution entropy , 2006, Pattern Recognit. Lett..

[9]  Dong-Sik Jang,et al.  Visual information retrieval system via content-based approach , 2002, Pattern Recognit..

[10]  B. S. Manjunath,et al.  Color and texture descriptors , 2001, IEEE Trans. Circuits Syst. Video Technol..

[11]  James Ze Wang,et al.  Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.

[12]  Peter H. N. de With,et al.  Depth-Image Compression Based on an R-D Optimized Quadtree Decomposition for the Transmission of Multiview Images , 2007, 2007 IEEE International Conference on Image Processing.

[13]  Mansour Jamzad,et al.  Achieving Higher Stability in Watermarking According to Image Complexity , 2006 .

[14]  James Ze Wang,et al.  SIMPLIcity: Semantics-Sensitive Integrated Matching for Picture LIbraries , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Luigi Cinque,et al.  Color-based image retrieval using spatial-chromatic histograms , 1999, Proceedings IEEE International Conference on Multimedia Computing and Systems.

[16]  Ricardo da Silva Torres,et al.  Content-Based Image Retrieval: Theory and Applications , 2006, RITA.

[17]  Dong-Sik Jang,et al.  Extraction of major object features using VQ clustering for content-based image retrieval , 2002, Pattern Recognit..

[18]  F. Golshani,et al.  The role of color in content-based image retrieval , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[19]  Jing Huang,et al.  Image indexing using color correlograms , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[20]  Erkki Oja,et al.  PicSOM - content-based image retrieval with self-organizing maps , 2000, Pattern Recognit. Lett..

[21]  Ivo Düntsch,et al.  Quadtree Representation and Compression of Spatial Data , 2011, Trans. Rough Sets.

[22]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[23]  Shih-Fu Chang,et al.  Image Retrieval: Current Techniques, Promising Directions, and Open Issues , 1999, J. Vis. Commun. Image Represent..

[24]  Yu-Chen Hu,et al.  Low-complexity progressive image transmission scheme based on quadtree segmentation , 2005, Real Time Imaging.

[25]  Meir Feder,et al.  Image compression via improved quadtree decomposition algorithms , 1994, IEEE Trans. Image Process..