On Secrecy Capacity of Minimum Storage Regenerating Codes

In this paper, we revisit the problem of characterizing the secrecy capacity of minimum storage regenerating (MSR) codes under the passive <inline-formula> <tex-math notation="LaTeX">$(l_{1},l_{2})$ </tex-math></inline-formula>-eavesdropper model, where the eavesdropper has access to data stored on <inline-formula> <tex-math notation="LaTeX">$l_{1}$ </tex-math></inline-formula> nodes and the repair data for an additional <inline-formula> <tex-math notation="LaTeX">$l_{2}$ </tex-math></inline-formula> nodes. We study it from the information-theoretic perspective. First, some general properties of MSR codes as well as a simple and generally applicable upper bound on secrecy capacity are given. Second, a new concept of <italic>stable</italic> MSR codes is introduced, where the stable property is shown to be closely linked with secrecy capacity. Finally, a comprehensive and explicit result on secrecy capacity in the linear MSR scenario is present, which generalizes all related works in the literature and also predicts certain results for some unexplored linear MSR codes.

[1]  Toni Ernvall,et al.  Codes Between MBR and MSR Points With Exact Repair Property , 2013, IEEE Transactions on Information Theory.

[2]  Cheng Huang,et al.  Erasure Coding in Windows Azure Storage , 2012, USENIX Annual Technical Conference.

[3]  R. Michael Buehrer,et al.  Toward Optimal Secure Distributed Storage Systems With Exact Repair , 2016, IEEE Transactions on Information Theory.

[4]  Syed A. Jafar,et al.  Interference Alignment and the Degrees of Freedom for the 3 User Interference Channel , 2007 .

[5]  Kannan Ramchandran,et al.  Interference Alignment in Regenerating Codes for Distributed Storage: Necessity and Code Constructions , 2010, IEEE Transactions on Information Theory.

[6]  Rudolf Lide,et al.  Finite fields , 1983 .

[7]  Sriram Vishwanath,et al.  Optimal Locally Repairable and Secure Codes for Distributed Storage Systems , 2012, IEEE Transactions on Information Theory.

[8]  Alexandros G. Dimakis,et al.  Network Coding for Distributed Storage Systems , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[9]  Kannan Ramchandran,et al.  Exact-repair MDS codes for distributed storage using interference alignment , 2010, 2010 IEEE International Symposium on Information Theory.

[10]  Dimitris S. Papailiopoulos,et al.  Locally Repairable Codes , 2012, IEEE Transactions on Information Theory.

[11]  W. Marsden I and J , 2012 .

[12]  John Kubiatowicz,et al.  Erasure Coding Vs. Replication: A Quantitative Comparison , 2002, IPTPS.

[13]  Rudolf Ahlswede,et al.  Network information flow , 2000, IEEE Trans. Inf. Theory.

[14]  Nihar B. Shah,et al.  Optimal Exact-Regenerating Codes for Distributed Storage at the MSR and MBR Points via a Product-Matrix Construction , 2010, IEEE Transactions on Information Theory.

[15]  Ron M. Roth,et al.  Author's Reply to Comments on 'Maximum-rank array codes and their application to crisscross error correction' , 1991, IEEE Trans. Inf. Theory.

[16]  Sriram Vishwanath,et al.  Secure Cooperative Regenerating Codes for Distributed Storage Systems , 2012, IEEE Transactions on Information Theory.

[17]  Jehoshua Bruck,et al.  On codes for optimal rebuilding access , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[18]  Kannan Ramchandran,et al.  Regenerating codes for errors and erasures in distributed storage , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[19]  Toni Ernvall,et al.  Exact-regenerating codes between MBR and MSR points , 2013, 2013 IEEE Information Theory Workshop (ITW).

[20]  Iwan M. Duursma Outer bounds for exact repair codes , 2014, ArXiv.

[21]  A. Robert Calderbank,et al.  Data secrecy in distributed storage systems under exact repair , 2013, 2013 International Symposium on Network Coding (NetCod).

[22]  Kannan Ramchandran,et al.  Distributed Storage Codes With Repair-by-Transfer and Nonachievability of Interior Points on the Storage-Bandwidth Tradeoff , 2010, IEEE Transactions on Information Theory.

[23]  H. Niederreiter,et al.  Finite Fields: Encyclopedia of Mathematics and Its Applications. , 1997 .

[24]  Cheng Huang,et al.  Polynomial length MDS codes with optimal repair in distributed storage , 2011, 2011 Conference Record of the Forty Fifth Asilomar Conference on Signals, Systems and Computers (ASILOMAR).

[25]  Jie Li,et al.  A Framework of Constructions of Minimal Storage Regenerating Codes With the Optimal Access/Update Property , 2013, IEEE Transactions on Information Theory.

[26]  Kannan Ramchandran,et al.  Explicit construction of optimal exact regenerating codes for distributed storage , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[27]  P. Vijay Kumar,et al.  An alternate construction of an access-optimal regenerating code with optimal sub-packetization level , 2015, 2015 Twenty First National Conference on Communications (NCC).

[28]  T. Asano,et al.  ENTROPY , RELATIVE ENTROPY , AND MUTUAL INFORMATION , 2008 .

[29]  Helmut Knebl,et al.  Introduction to Cryptography: Principles and Applications (Information Security and Cryptography) , 2007 .

[30]  Kannan Ramchandran,et al.  Exact-Repair MDS Code Construction Using Interference Alignment , 2011, IEEE Transactions on Information Theory.

[31]  Nihar B. Shah,et al.  Information-Theoretically Secure Regenerating Codes for Distributed Storage , 2011, 2011 IEEE Global Telecommunications Conference - GLOBECOM 2011.

[32]  Jehoshua Bruck,et al.  Long MDS codes for optimal repair bandwidth , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[33]  P. Vijay Kumar,et al.  Optimal linear codes with a local-error-correction property , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[34]  Helmut Knebl,et al.  Introduction to Cryptography , 2002, Information Security and Cryptography.

[35]  Yunnan Wu,et al.  A Survey on Network Codes for Distributed Storage , 2010, Proceedings of the IEEE.

[36]  Chao Tian,et al.  Exact-repair regenerating codes via layered erasure correction and block designs , 2013, 2013 IEEE International Symposium on Information Theory.

[37]  Syed Ali Jafar,et al.  Interference Alignment and Degrees of Freedom of the $K$-User Interference Channel , 2008, IEEE Transactions on Information Theory.

[38]  Chao Tian,et al.  Layered Exact-Repair Regenerating Codes via Embedded Error Correction and Block Designs , 2014, IEEE Transactions on Information Theory.

[39]  Iwan M. Duursma Shortened Regenerating Codes , 2019, IEEE Transactions on Information Theory.

[40]  Cheng Huang,et al.  On the Locality of Codeword Symbols , 2011, IEEE Transactions on Information Theory.

[41]  Yunghsiang Sam Han,et al.  Update-efficient regenerating codes with minimum per-node storage , 2013, 2013 IEEE International Symposium on Information Theory.

[42]  Dimitris S. Papailiopoulos,et al.  Repair Optimal Erasure Codes Through Hadamard Designs , 2011, IEEE Transactions on Information Theory.

[43]  Cheng Huang,et al.  Optimal Repair of MDS Codes in Distributed Storage via Subspace Interference Alignment , 2011, ArXiv.

[44]  Yunnan Wu,et al.  Reducing repair traffic for erasure coding-based storage via interference alignment , 2009, 2009 IEEE International Symposium on Information Theory.

[45]  Kannan Ramchandran,et al.  Securing Dynamic Distributed Storage Systems Against Eavesdropping and Adversarial Attacks , 2010, IEEE Transactions on Information Theory.

[46]  Jehoshua Bruck,et al.  Zigzag Codes: MDS Array Codes With Optimal Rebuilding , 2011, IEEE Transactions on Information Theory.