Global Golub-Kahan bidiagonalization applied to large discrete ill-posed problems
暂无分享,去创建一个
Khalide Jbilou | Lothar Reichel | A. H. Bentbib | M. El Guide | L. Reichel | K. Jbilou | M. E. Guide | Abdeslem Hafid Bentbib | Mohamed El Guide | A. Bentbib
[1] P. Hansen. Rank-Deficient and Discrete Ill-Posed Problems: Numerical Aspects of Linear Inversion , 1987 .
[2] H. Sadok,et al. OBLIQUE PROJECTION METHODS FOR LINEAR SYSTEMS WITH MULTIPLE RIGHT-HAND SIDES , 2005 .
[3] Jack Dongarra,et al. Numerical Linear Algebra for High-Performance Computers , 1998 .
[4] Per Christian Hansen,et al. Regularization Tools version 4.0 for Matlab 7.3 , 2007, Numerical Algorithms.
[5] H. Engl,et al. Regularization of Inverse Problems , 1996 .
[6] Hassane Sadok,et al. Algorithms for range restricted iterative methods for linear discrete ill-posed problems , 2012, Numerical Algorithms.
[7] Claude Brezinski,et al. Error estimates for the regularization of least squares problems , 2009, Numerical Algorithms.
[8] Charles R. Johnson,et al. Topics in Matrix Analysis , 1991 .
[9] Michael K. Ng,et al. Kronecker Product Approximations forImage Restoration with Reflexive Boundary Conditions , 2003, SIAM J. Matrix Anal. Appl..
[10] Faezeh Toutounian,et al. Global least squares method (Gl-LSQR) for solving general linear systems with several right-hand sides , 2006, Appl. Math. Comput..
[11] C. Loan,et al. Approximation with Kronecker Products , 1992 .
[12] Lothar Reichel,et al. Old and new parameter choice rules for discrete ill-posed problems , 2013, Numerical Algorithms.
[13] Walter Gautschi,et al. THE INTERPLAY BETWEEN CLASSICAL ANALYSIS AND (NUMERICAL) LINEAR ALGEBRA — A TRIBUTE TO GENE H. GOLUB , 2002 .
[14] L. Fox,et al. The numerical solution of non-singular linear integral equations , 1953, Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences.
[15] J. Nagy,et al. KRONECKER PRODUCT AND SVD APPROXIMATIONS IN IMAGE RESTORATION , 1998 .
[16] D. Calvetti,et al. Tikhonov Regularization of Large Linear Problems , 2003 .
[17] B. Chalmond. Modeling and inverse problems in image analysis , 2003 .
[18] C. W. Groetsch,et al. The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .
[19] W. Gautschi. Orthogonal Polynomials: Computation and Approximation , 2004 .
[20] Jack Dongarra,et al. 1. High-Performance Computing , 1998 .
[21] Lothar Reichel,et al. Matrices, moments, and rational quadrature , 2008 .
[22] Dianne P. O'Leary,et al. Deblurring Images: Matrices, Spectra and Filtering , 2006, J. Electronic Imaging.
[23] L. Reichel,et al. Large-scale Tikhonov regularization via reduction by orthogonal projection , 2012 .
[24] Gene H. Golub,et al. Matrices, moments, and quadrature , 2007, Milestones in Matrix Computation.
[25] Khalide Jbilou,et al. A global Lanczos method for image restoration , 2016, J. Comput. Appl. Math..
[26] Dianne P. O'Leary,et al. Deblurring Images: Matrices, Spectra, and Filtering (Fundamentals of Algorithms 3) (Fundamentals of Algorithms) , 2006 .
[27] Per Christian Hansen,et al. Rank-Deficient and Discrete Ill-Posed Problems , 1996 .
[28] M. Baart. The Use of Auto-correlation for Pseudo-rank Determination in Noisy III-conditioned Linear Least-squares Problems , 1982 .
[29] G. Golub,et al. Matrices, Moments and Quadrature with Applications , 2009 .