An Introduction to n-Categories

An n-category is some sort of algebraic structure consisting of objects, morphisms between objects, 2-morphisms between morphisms, and so on up to n-morphisms, together with various ways of composing them. We survey various concepts of n-category, with an emphasis on ‘weak’ n-categories, in which all rules governing the composition of j-morphisms hold only up to equivalence. (An n-morphism is an equivalence if it is invertible, while a j-morphism for j < n is an equivalence if it is invertible up to a (j + 1)-morphism that is an equivalence.) We discuss applications of weak n-categories to various subjects including homotopy theory and topological quantum field theory, and review the definition of weak n-categories recently proposed by Dolan and the author.

[1]  John W. Gray,et al.  Formal category theory: adjointness for 2-categories , 1974 .

[2]  J. Adams Infinite Loop Spaces (AM-90): Hermann Weyl Lectures, The Institute for Advanced Study. (AM-90) , 1978 .

[3]  Saunders MacLane,et al.  Natural Associativity and Commutativity , 1963 .

[4]  J. P. May,et al.  The geometry of iterated loop spaces , 1972 .

[5]  Zouhair Tamsamani,et al.  Sur des notions de n-catégorie et n-groupoi͏̈de non strictes via des ensembles multi-simpliciaux , 1996 .

[6]  John C. Baez,et al.  Higher Dimensional Algebra: I. Braided Monoidal 2-Categories , 1995, q-alg/9511013.

[7]  John Power,et al.  Why Tricategories? , 1995, Inf. Comput..

[8]  James Dolan,et al.  Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes , 1997 .

[9]  R. Street,et al.  Review of the elements of 2-categories , 1974 .

[10]  Vladimir Voevodsky,et al.  2-Categories and Zamolodchikov tetrahedra equations , 1994 .

[11]  Ronald Brown From Groups to Groupoids: a Brief Survey , 1987 .

[12]  Joan Mas,et al.  A Letter to R , 1967 .

[13]  John C. Baez Higher-Dimensional Algebra II. 2-Hilbert Spaces☆ , 1996 .

[14]  Michael Johnson,et al.  The combinatorics of n-categorical pasting☆ , 1989 .

[15]  Equivalence de la théorie homotopique des $n$-groupoïdes et celle des espaces topologiques $n$-tronqués , 1996 .

[16]  Carlos Simpson A closed model structure for $n$-categories, internal $Hom$, $n$-stacks and generalized Seifert-Van Kampen , 1997 .

[17]  Ross Street,et al.  Coherence of tricategories , 1995 .

[18]  Jim Stasheff,et al.  Homotopy associativity of $H$-spaces. II , 1963 .

[19]  S. Maclane,et al.  General theory of natural equivalences , 1945 .

[20]  J. Adams,et al.  Infinite Loop Spaces , 1978 .

[21]  Ruth Lawrence Triangulations, Categories and Extended Topological Field Theories , 1993 .

[22]  Vladimir Voevodsky,et al.  $\infty $-groupoids and homotopy types , 1991 .

[23]  F. Linton,et al.  Categories et Structures. , 1968 .

[24]  D. K. Harrison,et al.  Proceedings of the Conference on Categorical Algebra , 1966 .

[25]  S. Majid Foundations of Quantum Group Theory , 1995 .

[26]  Michael Batanin,et al.  Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories☆ , 1998 .

[27]  Jon P. May Simplicial objects in algebraic topology , 1993 .

[28]  Daniel S. Freed,et al.  Higher algebraic structures and quantization , 1992, hep-th/9212115.

[29]  A. Power,et al.  A 2-categorical pasting theorem , 1990 .

[30]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.

[31]  J. Benabou Introduction to bicategories , 1967 .

[32]  Ross Street,et al.  The algebra of oriented simplexes , 1987 .

[33]  T. Kohno New Developments In The Theory Of Knots , 1990 .

[34]  Timothy J. Hodges,et al.  A GUIDE TO QUANTUM GROUPS , 1997 .