Texture analysis of automatic graph cuts segmentations for detection of lung cancer recurrence after stereotactic radiotherapy

Stereotactic ablative radiotherapy (SABR) is a treatment for early-stage lung cancer with local control rates comparable to surgery. After SABR, benign radiation induced lung injury (RILI) results in tumour-mimicking changes on computed tomography (CT) imaging. Distinguishing recurrence from RILI is a critical clinical decision determining the need for potentially life-saving salvage therapies whose high risks in this population dictate their use only for true recurrences. Current approaches do not reliably detect recurrence within a year post-SABR. We measured the detection accuracy of texture features within automatically determined regions of interest, with the only operator input being the single line segment measuring tumour diameter, normally taken during the clinical workflow. Our leave-one-out cross validation on images taken 2–5 months post-SABR showed robustness of the entropy measure, with classification error of 26% and area under the receiver operating characteristic curve (AUC) of 0.77 using automatic segmentation; the results using manual segmentation were 24% and 0.75, respectively. AUCs for this feature increased to 0.82 and 0.93 at 8–14 months and 14–20 months post SABR, respectively, suggesting even better performance nearer to the date of clinical diagnosis of recurrence; thus this system could also be used to support and reinforce the physician’s decision at that time. Based on our ongoing validation of this automatic approach on a larger sample, we aim to develop a computer-aided diagnosis system which will support the physician’s decision to apply timely salvage therapies and prevent patients with RILI from undergoing invasive and risky procedures.

[1]  Richard W. Conners,et al.  A Theoretical Comparison of Texture Algorithms , 1980, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Aaron D Ward,et al.  Early prediction of tumor recurrence based on CT texture changes after stereotactic ablative radiotherapy (SABR) for lung cancer. , 2014, Medical physics.

[3]  Vladimir Kolmogorov,et al.  An experimental comparison of min-cut/max- flow algorithms for energy minimization in vision , 2001, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[4]  Aaron D. Ward,et al.  Early prediction of lung cancer recurrence after stereotactic radiotherapy using second order texture statistics , 2014, Medical Imaging.

[5]  Robert P. W. Duin,et al.  A Matlab Toolbox for Pattern Recognition , 2004 .

[6]  K. Togashi,et al.  Characterization of FDG-PET images after stereotactic body radiation therapy for lung cancer. , 2010, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[7]  M. Okada,et al.  [New response evaluation criteria in solid tumours-revised RECIST guideline (version 1.1)]. , 2009, Gan to kagaku ryoho. Cancer & chemotherapy.

[8]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[9]  Suresh Senan,et al.  High-risk CT features for detection of local recurrence after stereotactic ablative radiotherapy for lung cancer. , 2013, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[10]  Suresh Senan,et al.  Outcomes of stereotactic ablative radiotherapy in patients with potentially operable stage I non-small cell lung cancer. , 2012, International journal of radiation oncology, biology, physics.

[11]  Andrew Blake,et al.  "GrabCut" , 2004, ACM Trans. Graph..

[12]  Lena Gorelick,et al.  GrabCut in One Cut , 2013, 2013 IEEE International Conference on Computer Vision.