Random graphs as a model for pregeometry
暂无分享,去创建一个
[1] C. Isham,et al. Quantum norm theory and the quantisation of metric topology , 1990 .
[2] H. Nielsen,et al. Diffeomorphism Symmetry in Simplicial Quantum Gravity , 1986 .
[3] Bombelli,et al. Space-time as a causal set. , 1987, Physical review letters.
[4] R. Zapatrin. Pre-Regge calculus: Topology via logic , 1993 .
[5] Holger Bech Nielsen,et al. Origin of symmetries , 1991 .
[6] Mann,et al. Theories of gravitation in two dimensions. , 1988, Physical review. D, Particles and fields.
[7] Bergfinnur Durhuus,et al. THREE-DIMENSIONAL SIMPLICIAL QUANTUM GRAVITY AND GENERALIZED MATRIX MODELS , 1991 .
[8] C. Itzykson,et al. Quantum field theory techniques in graphical enumeration , 1980 .
[9] I. Oda,et al. Topological pregauge pregeometry , 1991 .
[10] David Finkelstein,et al. SPACE--TIME CODE. , 1969 .
[11] Semilocality of one-dimensional simplicial quantum gravity , 1987 .
[12] C. Gardiner. Handbook of Stochastic Methods , 1983 .
[13] Gregory,et al. Structure of random discrete spacetime. , 1990, Physical review letters.
[14] Béla Bollobás,et al. Random Graphs , 1985 .
[15] R. Jackiw. Lower dimensional gravity , 1985 .
[16] E. Álvarez. World function dynamics in generalized spacetimes , 1988 .
[17] Bergfinnur Durhuus,et al. Three-dimensional simplicial gravity and generalized matrix models , 1990 .
[18] Models of Pregeometry , 1994 .
[19] Claude Berge,et al. Graphs and Hypergraphs , 2021, Clustering.
[20] G. Hooft. Quantization of Discrete Deterministic Theories by Hilbert Space Extension , 1990 .