Random graphs as a model for pregeometry

A toy model for pregeometry based on random graphs is proposed, and it is shown how it is related to other models in the literature. A prediction of the dimensionality of space is given and we obtain bounds on the Euler number.

[1]  C. Isham,et al.  Quantum norm theory and the quantisation of metric topology , 1990 .

[2]  H. Nielsen,et al.  Diffeomorphism Symmetry in Simplicial Quantum Gravity , 1986 .

[3]  Bombelli,et al.  Space-time as a causal set. , 1987, Physical review letters.

[4]  R. Zapatrin Pre-Regge calculus: Topology via logic , 1993 .

[5]  Holger Bech Nielsen,et al.  Origin of symmetries , 1991 .

[6]  Mann,et al.  Theories of gravitation in two dimensions. , 1988, Physical review. D, Particles and fields.

[7]  Bergfinnur Durhuus,et al.  THREE-DIMENSIONAL SIMPLICIAL QUANTUM GRAVITY AND GENERALIZED MATRIX MODELS , 1991 .

[8]  C. Itzykson,et al.  Quantum field theory techniques in graphical enumeration , 1980 .

[9]  I. Oda,et al.  Topological pregauge pregeometry , 1991 .

[10]  David Finkelstein,et al.  SPACE--TIME CODE. , 1969 .

[11]  Semilocality of one-dimensional simplicial quantum gravity , 1987 .

[12]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[13]  Gregory,et al.  Structure of random discrete spacetime. , 1990, Physical review letters.

[14]  Béla Bollobás,et al.  Random Graphs , 1985 .

[15]  R. Jackiw Lower dimensional gravity , 1985 .

[16]  E. Álvarez World function dynamics in generalized spacetimes , 1988 .

[17]  Bergfinnur Durhuus,et al.  Three-dimensional simplicial gravity and generalized matrix models , 1990 .

[18]  Models of Pregeometry , 1994 .

[19]  Claude Berge,et al.  Graphs and Hypergraphs , 2021, Clustering.

[20]  G. Hooft Quantization of Discrete Deterministic Theories by Hilbert Space Extension , 1990 .