Near-Optimal Light Spanners
暂无分享,去创建一个
[1] Béla Bollobás,et al. Extremal problems in graph theory , 1977, J. Graph Theory.
[2] Mikkel Thorup,et al. Deterministic Constructions of Approximate Distance Oracles and Spanners , 2005, ICALP.
[3] Mikkel Thorup,et al. Spanners and emulators with sublinear distance errors , 2006, SODA '06.
[4] Kurt Mehlhorn,et al. New constructions of (α, β)-spanners and purely additive spanners , 2005, SODA '05.
[5] David P. Dobkin,et al. On sparse spanners of weighted graphs , 1993, Discret. Comput. Geom..
[6] Michiel H. M. Smid,et al. The Weak Gap Property in Metric Spaces of Bounded Doubling Dimension , 2009, Efficient Algorithms.
[7] Christopher M. Hartman. Extremal problems in graph theory , 1997 .
[8] Arthur M. Farley,et al. Spanners and message distribution in networks , 2004, Discret. Appl. Math..
[9] Seth Pettie,et al. Low distortion spanners , 2007, TALG.
[10] Eli Upfal,et al. A trade-off between space and efficiency for routing tables , 1989, JACM.
[11] Shiri Chechik,et al. New Additive Spanners , 2013, SODA.
[12] Giri Narasimhan,et al. Optimally sparse spanners in 3-dimensional Euclidean space , 1993, SCG '93.
[13] Shiri Chechik,et al. Approximate Distance Oracles with Improved Bounds , 2015, STOC.
[14] David Peleg,et al. (1+epsilon, beta)-Spanner Constructions for General Graphs , 2004, SIAM J. Comput..
[15] Béla Bollobás,et al. Sparse distance preservers and additive spanners , 2003, SODA '03.
[16] Christian Wulff-Nilsen,et al. Approximate distance oracles with improved preprocessing time , 2011, SODA.
[17] David P. Woodruff. Lower Bounds for Additive Spanners, Emulators, and More , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[18] Michael Elkin,et al. Optimal euclidean spanners: really short, thin and lanky , 2012, STOC '13.
[19] Uri Zwick,et al. All-Pairs Almost Shortest Paths , 1997, SIAM J. Comput..
[20] Mikkel Thorup,et al. Approximate distance oracles , 2005, J. ACM.
[21] Michael Elkin,et al. Light Spanners , 2014, SIAM J. Discret. Math..
[22] Nicholas Kalouptsidis,et al. Efficient Algorithms for , 1999 .
[23] Mikkel Thorup,et al. Compact routing schemes , 2001, SPAA '01.
[24] Kurt Mehlhorn,et al. New constructions of (alpha, beta)-spanners and purely additive spanners , 2005, SODA.
[25] Shay Solomon,et al. The Greedy Spanner is Existentially Optimal , 2016, PODC.
[26] Kurt Mehlhorn,et al. Additive spanners and (α, β)-spanners , 2010, TALG.
[27] Shiri Chechik. Compact routing schemes with improved stretch , 2013, PODC '13.
[28] David Peleg,et al. An optimal synchronizer for the hypercube , 1987, PODC '87.
[29] Jose Augusto Ramos Soares,et al. Graph Spanners: a Survey , 1992 .
[30] David P. Woodruff. Additive Spanners in Nearly Quadratic Time , 2010, ICALP.
[31] Giri Narasimhan,et al. New sparseness results on graph spanners , 1995, Int. J. Comput. Geom. Appl..
[32] Andrew V. Goldberg,et al. Network decomposition and locality in distributed computation , 1989, 30th Annual Symposium on Foundations of Computer Science.
[33] Piotr Indyk,et al. Fast estimation of diameter and shortest paths (without matrix multiplication) , 1996, SODA '96.
[34] Lee-Ad Gottlieb,et al. A Light Metric Spanner , 2015, 2015 IEEE 56th Annual Symposium on Foundations of Computer Science.
[35] Shiri Chechik,et al. Approximate Distance Oracle with Constant Query Time , 2013, ArXiv.