The population genetics of Drosophila transposable elements.

The theoretical and empirical studies reviewed here yield the conclusion that Drosophila TEs are maintained in populations as a result of transpositional increase in copy number, and that their spread is checked by one or more opposing forces. In other words, the concept that TEs are essentially intragenomic parasites is supported

[1]  M. Aguadé,et al.  Restriction-map variation at the zeste-tko region in natural populations of Drosophila melanogaster. , 1989, Molecular biology and evolution.

[2]  J. Ajioka,et al.  The accumulation of P-elements on the tip of the X chromosome in populations of Drosophila melanogaster. , 1989, Genetical research.

[3]  R. Hudson,et al.  On the role of unequal exchange in the containment of transposable element copy number. , 1988, Genetical research.

[4]  T. Eickbush,et al.  Ribosomal DNA insertion elements R1Bm and R2Bm can transpose in a sequence specific manner to locations outside the 28S genes. , 1988, Nucleic acids research.

[5]  C. Hutchison,et al.  Extensive movement of LINES ONE sequences in beta-globin loci of Mus caroli and Mus domesticus , 1988, Molecular and cellular biology.

[6]  C. Langley,et al.  Molecular and phenotypic variation of the white locus region in Drosophila melanogaster. , 1988, Genetics.

[7]  C. Aquadro,et al.  The rosy region of Drosophila melanogaster and Drosophila simulans. I. Contrasting levels of naturally occurring DNA restriction map variation and divergence. , 1988, Genetics.

[8]  J. Oakeshott,et al.  Molecular analysis of the P-M gonadal dysgenesis cline in eastern Australian Drosophila melanogaster. , 1988, Genetics.

[9]  W. Engels,et al.  Somatic effects of P element activity in Drosophila melanogaster: pupal lethality. , 1987, Genetics.

[10]  C. Aquadro,et al.  Restriction-map variation in natural populations of Drosophila melanogaster: white-locus region. , 1987, Molecular biology and evolution.

[11]  M. Monastirioti,et al.  hobo is responsible for the induction of hybrid dysgenesis by strains of Drosophila melanogaster bearing the male recombination factor 23.5MRF , 1987, Cell.

[12]  B. Charlesworth,et al.  A test for the role of natural selection in the stabilization of transposable element copy number in a population of Drosophila melanogaster. , 1987, Genetical research.

[13]  L. Rhomberg,et al.  A Comprehensive Study of Genic Variation in Natural Populations of Drosophila melanogaster. I. Estimates of Gene Flow from Rare Alleles. , 1987, Genetics.

[14]  B. Judd,et al.  Asymmetrical pairings of transposons in and proximal to the white locus of Drosophila account for four classes of regularly occurring exchange products. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[15]  W. Stephan Recombination and the evolution of satellite DNA. , 1986, Genetical research.

[16]  W. Stephan,et al.  The evolution of restricted recombination and the accumulation of repeated DNA sequences. , 1986, Genetics.

[17]  B. Charlesworth,et al.  The evolution of self-regulated transposition of transposable elements. , 1986, Genetics.

[18]  J. Brookfield A model for DNA sequence evolution within transposable element families. , 1986, Genetics.

[19]  D. Hartl,et al.  The evolution of DNA sequences in Escherichia coli. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  J. Brookfield The population biology of transposable elements. , 1986, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[21]  Finnegan Dj,et al.  Transposable elements in Drosophila melanogaster. , 1986 .

[22]  C. Aquadro,et al.  Sequence evolution within populations under multiple types of mutation. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Hudson,et al.  On the divergence of members of a transposable element family , 1986, Journal of mathematical biology.

[24]  T. Ohta A model of duplicative transposition and gene conversion for repetitive DNA families. , 1985, Genetics.

[25]  T Darden,et al.  Evolution and extinction of transposable elements in Mendelian populations. , 1985, Genetics.

[26]  C. Schmid,et al.  The Evolution of Interspersed Repetitive DNA Sequences in Mammals and Other Vertebrates , 1985 .

[27]  Wen-Hsiung Li,et al.  Evolution of DNA Sequences , 1985 .

[28]  R. Paro,et al.  The molecular basis of I-R hybrid Dysgenesis in drosophila melanogaster: Identification, cloning, and properties of the I factor , 1984, Cell.

[29]  P. Bingham,et al.  On the theory of speciation induced by transposable elements. , 1984, Genetics.

[30]  G. Georgiev,et al.  Transposition bursts in genetically unstable Drosophila melanogaster , 1984, Nature.

[31]  T. Ohta Population genetics of transposable elements. , 1984, IMA journal of mathematics applied in medicine and biology.

[32]  B. Charlesworth,et al.  The population dynamics of transposable elements , 1983 .

[33]  W. McGinnis,et al.  A transposable element inserted just 5′ to a Drosophila glue protein gene alters gene expression and chromatin structure , 1983, Cell.

[34]  Edward C. Cox,et al.  Transposable elements as mutator genes in evolution , 1983, Nature.

[35]  M. G. Kidwell,et al.  CHAPTER 9 – Hybrid Dysgenesis Determinants , 1983 .

[36]  C. Langley,et al.  Restriction map variation in the Adh region of Drosophila. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[37]  M. W. Young,et al.  Differing levels of dispersed repetitive DNA among closely related species of Drosophila. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[38]  D. Hickey Selfish DNA: a sexually-transmitted nuclear parasite. , 1982, Genetics.

[39]  T. Ohta Population genetics of selfish DNA , 1981, Nature.

[40]  Eric O Long,et al.  Ribosomal insertion-like elements in Drosophila melanogaster are interspersed with mobile sequences , 1981, Cell.

[41]  K. Skryabin,et al.  General properties of mobile dispersed genetic elements in Drosophila melanogaster. , 1981, Cold Spring Harbor symposia on quantitative biology.

[42]  Transpositions, mutable genes, and the dispersed gene family Dm225 in Drosophila melanogaster. , 1981, Cold Spring Harbor symposia on quantitative biology.

[43]  A. Hilliker,et al.  The genetic analysis of D. melanogaster heterochromatin , 1980, Cell.

[44]  W. Doolittle,et al.  Selfish genes, the phenotype paradigm and genome evolution , 1980, Nature.

[45]  S. Kidd,et al.  A DNA segment from D. melanogaster which contains five tandemly repeating units homologous to the major rDNA insertion , 1980, Cell.

[46]  Ronald W. Davis,et al.  Evidence for transposition of dispersed repetitive DNA families in yeast , 1979, Cell.

[47]  J. Felsenstein,et al.  The evolutionary advantage of recombination. II. Individual selection for recombination. , 1976, Genetics.

[48]  D. Hogness,et al.  A system for mapping DNA sequences in the chromosomes of Drosophila melanogaster. , 1974, Cell.

[49]  W. Ewens The sampling theory of selectively neutral alleles. , 1972, Theoretical population biology.

[50]  H. Muller THE RELATION OF RECOMBINATION TO MUTATIONAL ADVANCE. , 1964, Mutation research.

[51]  J. Crow,et al.  THE NUMBER OF ALLELES THAT CAN BE MAINTAINED IN A FINITE POPULATION. , 1964, Genetics.