Non-Hermitian Hamiltonians for linear and nonlinear optical response: A model for plexcitons.

In polaritons, the properties of matter are modified by mixing the molecular transitions with light modes inside a cavity. Resultant hybrid light-matter states exhibit energy level shifts, are delocalized over many molecular units, and have a different excited-state potential energy landscape, which leads to modified exciton dynamics. Previously, non-Hermitian Hamiltonians have been derived to describe the excited states of molecules coupled to surface plasmons (i.e., plexcitons), and these operators have been successfully used in the description of linear and third order optical response. In this article, we rigorously derive non-Hermitian Hamiltonians in the response function formalism of nonlinear spectroscopy by means of Feshbach operators and apply them to explore spectroscopic signatures of plexcitons. In particular, we analyze the optical response below and above the exceptional point that arises for matching transition energies for plasmon and molecular components and study their decomposition using double-sided Feynman diagrams. We find a clear distinction between interference and Rabi splitting in linear spectroscopy and a qualitative change in the symmetry of the line shape of the nonlinear signal when crossing the exceptional point. This change corresponds to one in the symmetry of the eigenvalues of the Hamiltonian. Our work presents an approach for simulating the optical response of sublevels within an electronic system and opens new applications of nonlinear spectroscopy to examine the different regimes of the spectrum of non-Hermitian Hamiltonians.

[1]  L. Cederbaum,et al.  Polariton entering a continuum: Giant diffuse polaritonic resonance , 2022, Physical Review A.

[2]  Lev Chuntonov,et al.  Vibrational Polaritons in Disordered Molecular Ensembles , 2022, The journal of physical chemistry letters.

[3]  Jianshu Cao,et al.  Unusual dynamical properties of disordered polaritons in microcavities , 2021, Physical Review B.

[4]  S. Mukamel,et al.  Manipulating valence and core electronic excitations of a transition-metal complex using UV/Vis and X-ray cavities† , 2021, Chemical science.

[5]  T. Pullerits,et al.  Understanding radiative transitions and relaxation pathways in plexcitons , 2021, Chem.

[6]  M. Chergui,et al.  Energy relaxation pathways between light-matter states revealed by coherent two-dimensional spectroscopy , 2020 .

[7]  S. Reich,et al.  Deep strong light–matter coupling in plasmonic nanoparticle crystals , 2020, Nature.

[8]  R. Ribeiro,et al.  Intermolecular vibrational energy transfer enabled by microcavity strong light–matter coupling , 2020, Science.

[9]  N. Banerji,et al.  Polaron Photoconductivity in the Weak and Strong Light-Matter Coupling Regime. , 2020, Physical review letters.

[10]  J. Aizpurua,et al.  Complex plasmon-exciton dynamics revealed through quantum dot light emission in a nanocavity , 2020, Nature Communications.

[11]  Barry P Rand,et al.  Polariton Transitions in Femtosecond Transient Absorption Studies of Ultrastrong Light–Molecule Coupling , 2020, The journal of physical chemistry letters.

[12]  Jonathan Keeling,et al.  Bose-Einstein Condensation of Exciton-Polaritons in Organic Microcavities. , 2020, Annual review of physical chemistry.

[13]  G. Granucci,et al.  Strong Coupling with Light Enhances the Photoisomerization Quantum Yield of Azobenzene , 2019, Chem.

[14]  E. Weiss,et al.  Properties of quantum dots coupled to plasmons and optical cavities. , 2019, The Journal of chemical physics.

[15]  T. Pullerits,et al.  Adiabatic elimination and subspace evolution of open quantum systems , 2019, Physical Review A.

[16]  M. S. Zubairy,et al.  Polariton-assisted Cooperativity of Molecules in Microcavities Monitored by Two-dimensional Infrared Spectroscopy. , 2019, The journal of physical chemistry letters.

[17]  R. Ribeiro,et al.  State-Selective Polariton to Dark State Relaxation Dynamics. , 2019, The journal of physical chemistry. A.

[18]  P. Huo,et al.  Investigating New Reactivities Enabled by Polariton Photochemistry. , 2019, The journal of physical chemistry letters.

[19]  J. Lischner,et al.  Single plasmon hot carrier generation in metallic nanoparticles , 2019, Communications Physics.

[20]  K. Shankar,et al.  Plexcitonics – fundamental principles and optoelectronic applications , 2019, Journal of Materials Chemistry C.

[21]  R. Ribeiro,et al.  Remote Control of Chemistry in Optical Cavities , 2018, Chem.

[22]  M. Pelton,et al.  Strong coupling and induced transparency at room temperature with single quantum dots and gap plasmons , 2018, Nature Communications.

[23]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[24]  Adam D. Dunkelberger,et al.  Two-dimensional infrared spectroscopy of vibrational polaritons , 2018, Proceedings of the National Academy of Sciences.

[25]  S. Kéna‐Cohen,et al.  Polariton-Assisted Singlet Fission in Acene Aggregates. , 2017, The journal of physical chemistry letters.

[26]  R. Ribeiro,et al.  Theory for polariton-assisted remote energy transfer† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c8sc00171e , 2017, Chemical science.

[27]  A. Keller,et al.  Ubiquity of Beutler-Fano profiles : From scattering to dissipative processes , 2017, 1710.04800.

[28]  F. García-Vidal,et al.  Polaritonic Chemistry with Organic Molecules , 2017 .

[29]  H. Luk,et al.  Multiscale Molecular Dynamics Simulations of Polaritonic Chemistry. , 2017, Journal of chemical theory and computation.

[30]  T. Ebbesen,et al.  Energy Transfer between Spatially Separated Entangled Molecules , 2017, Angewandte Chemie.

[31]  Thomas W. Ebbesen,et al.  Ground‐State Chemical Reactivity under Vibrational Coupling to the Vacuum Electromagnetic Field , 2016, Angewandte Chemie.

[32]  Ravishankar Sundararaman,et al.  Experimental and Ab Initio Ultrafast Carrier Dynamics in Plasmonic Nanoparticles. , 2016, Physical review letters.

[33]  Srihari Keshavamurthy,et al.  Annual Review of Physical Chemistry, 2015 , 2016 .

[34]  T. Ebbesen,et al.  Non-Radiative Energy Transfer Mediated by Hybrid Light-Matter States. , 2016, Angewandte Chemie.

[35]  Jeremy J. Baumberg,et al.  Single-molecule strong coupling at room temperature in plasmonic nanocavities , 2016, Nature.

[36]  S. Rodriguez Classical and quantum distinctions between weak and strong coupling , 2016 .

[37]  G. M. Akselrod,et al.  Ultrafast Room-Temperature Single Photon Emission from Quantum Dots Coupled to Plasmonic Nanocavities. , 2016, Nano letters.

[38]  F. Spano,et al.  Cavity-Controlled Chemistry in Molecular Ensembles. , 2015, Physical review letters.

[39]  V. Bulović,et al.  Plexciton Dirac points and topological modes , 2015, Nature Communications.

[40]  F. García-Vidal,et al.  Cavity-induced modifications of molecular structure in the strong coupling regime , 2015, 1506.03331.

[41]  Tõnu Pullerits,et al.  Coherent two-dimensional photocurrent spectroscopy in a PbS quantum dot photocell , 2014, Nature Communications.

[42]  Jorge Bravo-Abad,et al.  Theory of strong coupling between quantum emitters and localized surface plasmons , 2014 .

[43]  F. García-Vidal,et al.  Extraordinary exciton conductance induced by strong coupling. , 2014, Physical review letters.

[44]  J. Schachenmayer,et al.  Cavity-enhanced transport of excitons. , 2014, Physical review letters.

[45]  C. Kocabas,et al.  Probing ultrafast energy transfer between excitons and plasmons in the ultrastrong coupling regime , 2014 .

[46]  David G Lidzey,et al.  Polariton-mediated energy transfer between organic dyes in a strongly coupled optical microcavity. , 2014, Nature materials.

[47]  T. Ebbesen,et al.  Phase transition of a perovskite strongly coupled to the vacuum field. , 2014, Nanoscale.

[48]  W. Barnes,et al.  Strong coupling between surface plasmon polaritons and emitters: a review , 2014, Reports on progress in physics. Physical Society.

[49]  P. Jain,et al.  Unified Theoretical Framework for Realizing Diverse Regimes of Strong Coupling between Plasmons and Electronic Transitions , 2014 .

[50]  T. Ebbesen,et al.  Tuning the Work‐Function Via Strong Coupling , 2013, Advanced materials.

[51]  T. Pullerits,et al.  3D spectroscopy of vibrational coherences in quantum dots: theory. , 2013, The journal of physical chemistry. B.

[52]  C. Manzoni,et al.  Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates , 2013, Nature Photonics.

[53]  T. Ebbesen,et al.  Modifying chemical landscapes by coupling to vacuum fields. , 2012, Angewandte Chemie.

[54]  Benjamin Gallinet,et al.  Influence of electromagnetic interactions on the line shape of plasmonic Fano resonances. , 2011, ACS nano.

[55]  Giulio Cerullo,et al.  Ultrafast polariton relaxation dynamics in an organic semiconductor microcavity , 2011 .

[56]  Naomi J Halas,et al.  Plexciton dynamics: exciton-plasmon coupling in a J-aggregate-Au nanoshell complex provides a mechanism for nonlinearity. , 2011, Nano letters.

[57]  M. Cho Two-Dimensional Optical Spectroscopy , 2009 .

[58]  G. Wiederrecht,et al.  Ultrafast hybrid plasmonics , 2008 .

[59]  Andrew H Marcus,et al.  Fluorescence-detected two-dimensional electronic coherence spectroscopy by acousto-optic phase modulation. , 2007, The Journal of chemical physics.

[60]  Carl M. Bender,et al.  Making sense of non-Hermitian Hamiltonians , 2007, hep-th/0703096.

[61]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[62]  B. Englert,et al.  Cavity quantum electrodynamics , 2006 .

[63]  D. Jonas Two-dimensional femtosecond spectroscopy. , 2003, Annual review of physical chemistry.

[64]  A. Doherty,et al.  Cavity Quantum Electrodynamics: Coherence in Context , 2002, Science.

[65]  G. Wiederrecht,et al.  Photoinduced charge separation reactions of J-aggregates coated on silver nanoparticles. , 2002, Journal of the American Chemical Society.

[66]  J. Raimond,et al.  Manipulating quantum entanglement with atoms and photons in a cavity , 2001 .

[67]  Christophe Voisin,et al.  Ultrafast Electron Dynamics and Optical Nonlinearities in Metal Nanoparticles , 2001 .

[68]  M. Ratner,et al.  Injection Time in the Metaloxide−Molecule Interface Calculated within the Tight-Binding Model , 2000 .

[69]  S. Mukamel Principles of Nonlinear Optical Spectroscopy , 1995 .

[70]  Daniel Kleppner,et al.  Cavity quantum electrodynamics , 1986 .

[71]  U. Fano Effects of Configuration Interaction on Intensities and Phase Shifts , 1961 .

[72]  J. Herskowitz,et al.  Proceedings of the National Academy of Sciences, USA , 1996, Current Biology.