Optimisation of Ni–Ti shape memory alloy response time by transient heat transfer analysis

[1]  Yoon Young Kim,et al.  Topology optimization of planar shape memory alloy thermal actuators using element connectivity parameterization , 2011 .

[2]  Joachim Strittmatter,et al.  Long-Time Stability of Ni-Ti-Shape Memory Alloys for Automotive Safety Systems , 2011, Journal of Materials Engineering and Performance.

[3]  Tomi Lindroos,et al.  Long-term behaviour of binary Ti–49.7Ni (at.%) SMA actuators—the fatigue lives and evolution of strains on thermal cycling , 2010 .

[4]  King-Leung Wong,et al.  The Critical Heat Transfer Characteristics of an Insulated Sphere Considering Heat Radiation , 2010 .

[5]  Aleksandar Subic,et al.  Lagging for control of shape memory alloy actuator response time , 2010 .

[6]  Chengli Song,et al.  History and Current Situation of Shape Memory Alloys Devices for Minimally Invasive Surgery , 2010 .

[7]  Martin Leary,et al.  ENHANCED SHAPE MEMORY ALLOY ACTUATORS , 2010 .

[8]  Alessandro Zanella,et al.  Electrically Actuated Antiglare Rear-View Mirror Based on a Shape Memory Alloy Actuator , 2009, Journal of Materials Engineering and Performance.

[9]  M. Singaperumal,et al.  Modelling and simulation of a novel shape memory alloy actuated compliant parallel manipulator , 2008 .

[10]  Fred van Keulen,et al.  Modeling of shape memory alloy shells for design optimization , 2008 .

[11]  Wei Min Huang,et al.  Evolution of transformation characteristics with heating/cooling rate in NiTi shape memory alloys , 2008 .

[12]  Francesco Butera SHAPE MEMORY ACTUATORS FOR AUTOMOTIVE APPLICATIONS , 2008 .

[13]  Eduardo A. Tannuri,et al.  Modeling, control and experimental validation of a novel actuator based on shape memory alloys , 2009 .

[14]  Dimitris C. Lagoudas,et al.  A 3-D constitutive model for shape memory alloys incorporating pseudoelasticity and detwinning of self-accommodated martensite , 2007 .

[15]  D. Leo Engineering Analysis of Smart Material Systems , 2007 .

[16]  M. Sreekumar,et al.  Critical review of current trends in shape memory alloy actuators for intelligent robots , 2007, Ind. Robot.

[17]  Roderick V. N. Melnik,et al.  Simulation of Phase Combinations in Shape Memory Alloys Patches by Hybrid Optimization Methods , 2007, ArXiv.

[18]  Mohd Imran Ghazali,et al.  Phase Transformation Temperatures for Shape Memory Alloy Wire , 2007 .

[19]  Marcelo A. Savi,et al.  An overview of constitutive models for shape memory alloys , 2006 .

[20]  Kyu-Jin Cho,et al.  Segmented shape memory alloy actuators using hysteresis loop control , 2006 .

[21]  Kiyohide Wada,et al.  Shape recovery of NiTi shape memory alloy under various pre-strain and constraint conditions , 2005 .

[22]  K. M. Liew,et al.  Meshfree modelling and characterisation of thermomechanical behaviour of NiTi alloys , 2005 .

[23]  Pradip Majumdar,et al.  Computational Methods For Heat And Mass Transfer , 2005 .

[24]  Shi-Liang Zhu,et al.  Characteristics of two-way shape memory TiNi springs driven by electrical current , 2004 .

[25]  John Yen,et al.  Design and Implementation of a Shape Memory Alloy Actuated Reconfigurable Airfoil , 2003 .

[26]  Shi-Liang Zhu,et al.  Design of TiNi alloy two-way shape memory coil extension spring , 2003 .

[27]  H. Naito,et al.  Analytical Study on Training Effect of Pseudoelastic Transformation of Shape Memory Alloys in Cyclic Loading , 2001 .

[28]  Man Wong,et al.  Frequency response of TiNi shape memory alloy thin film micro-actuators , 2000, Proceedings IEEE Thirteenth Annual International Conference on Micro Electro Mechanical Systems (Cat. No.00CH36308).

[29]  Y. Çengel Heat and Mass Transfer: Fundamentals and Applications , 2000 .

[30]  Jan Van Humbeeck,et al.  Non-medical applications of shape memory alloys , 1999 .

[31]  Manohar Kulkarni Critical Radius for Radial Heat Conduction: A Necessary Criterion but Not Always Sufficient , 1999, Heat Transfer: Volume 4.

[32]  D. R. Pitts,et al.  Schaum's outline of theory and problems of heat transfer , 1998 .

[33]  E. Sacco,et al.  A one-dimensional model for superelastic shape-memory alloys with different elastic properties between austenite and martensite , 1997 .

[34]  D. Lagoudas,et al.  A thermodynamical constitutive model for shape memory materials. Part I. The monolithic shape memory alloy , 1996 .

[35]  Dimitris C. Lagoudas,et al.  On the role of thermoelectric heat transfer in the design of SMA actuators: theoretical modeling and experiment , 1995 .

[36]  Thomas J. Pence,et al.  A Thermomechanical Model for a One Variant Shape Memory Material , 1994 .

[37]  Craig A. Rogers,et al.  One-Dimensional Thermomechanical Constitutive Relations for Shape Memory Materials , 1990 .

[38]  M. Achenbach A model for an alloy with shape memory , 1989 .

[39]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[40]  J. V. Gilfrich,et al.  Effect of Low‐Temperature Phase Changes on the Mechanical Properties of Alloys near Composition TiNi , 1963 .

[41]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947, Mathematical Proceedings of the Cambridge Philosophical Society.

[42]  Arne. Olander AN ELECTROCHEMICAL INVESTIGATION OF SOLID CADMIUM-GOLD ALLOYS , 1932 .