Magnetic phase transition and magnetocaloric effect in Mn1–xZnxCoGe alloys
暂无分享,去创建一个
Du You-wei | Gong Yuanyuan | Q. Liu 刘 | Y. Gong 龚 | Y. Du 都 | W. Dunhui | Liu Qiang | Shen Chengjuan | Cheng-Juan 程娟 Shen 沈 | D. Wang 王
[1] Y. Chai,et al. Martensitic transformation and giant magnetic entropy change in Ni 42.8 Mn 40.3 Co 5.7 Sn 11.2 alloy , 2014 .
[2] Youwei Du,et al. Martensitic transformation and related magnetic effects in Ni—Mn-based ferromagnetic shape memory alloys , 2013 .
[3] J. L. Chen,et al. Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window , 2013, 1303.7282.
[4] Zhida Han,et al. Magnetostructural transformation in Mn1+xNi1−xGe and Mn1−xNi1+xGe alloys , 2012 .
[5] I. Dubenko,et al. Giant magnetocaloric effects near room temperature in Mn1 − xCuxCoGe , 2012 .
[6] J. L. Chen,et al. Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys , 2012, 1211.6815.
[7] 王敦辉,et al. Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn 1+ x Co 1- x Ge alloys , 2011 .
[8] N. Trung,et al. Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe , 2011 .
[9] Huibin Xu,et al. Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets , 2011, Nature Communications.
[10] Youwei Du,et al. The magnetostructural transformation and magnetocaloric effect in Co-doped MnNiGe1.05 alloys , 2010 .
[11] N. Trung,et al. Giant magnetocaloric effects by tailoring the phase transitions , 2010 .
[12] N. Trung,et al. From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−xCrxCoGe compounds , 2010 .
[13] J. L. Chen,et al. Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1-xCoGe alloys , 2010, 1003.0489.
[14] N. Trung,et al. Tunable thermal hysteresis in MnFe(P,Ge) compounds , 2009 .
[15] V. Amaral,et al. The effect of magnetic irreversibility on estimating the magnetocaloric effect from magnetization measurements , 2009 .
[16] P. Ranke,et al. Magnetocaloric effect around a magnetic phase transition , 2008 .
[17] Jirong Sun,et al. Determination of the entropy changes in the compounds with a first-order magnetic transition , 2007 .
[18] Yoshiyuki Kawazoe,et al. Vacancy induced structural and magnetic transition in MnCo1−xGe , 2006 .
[19] K. Buschow,et al. Structural and Magnetic Properties of MnFe$_1 - rm x$Co$_rm x$Ge Compounds , 2006, IEEE Transactions on Magnetics.
[20] X. Moya,et al. Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.
[21] Kazuo Watanabe,et al. Field-Induced Martensitic Transformation in New Ferromagnetic Shape Memory Compound Mn1.07Co0.92Ge , 2004 .
[22] K. Gschneidner,et al. Recent developments in magnetocaloric materials , 2003 .
[23] F. Hu,et al. Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .
[24] Karl A. Gschneidner,et al. Magnetocaloric effect and magnetic refrigeration , 1999 .
[25] J. Glanz. Making a Bigger Chill With Magnets , 1998, Science.
[26] T. Kaneko,et al. Magneto-volume effect of MnCo1-xGe(0≤x≤0.2) , 1995 .
[27] A. Arrott. Criterion for Ferromagnetism from Observations of Magnetic Isotherms , 1957 .
[28] Youwei Du,et al. Large roomtemperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1−xVxCoGe alloys , 2012 .