Magnetic phase transition and magnetocaloric effect in Mn1–xZnxCoGe alloys

The magnetic phase transition and magnetocaloric effect are studied in a series of Mn1−xZnxCoGe (x = 0.01, 0.02, 0.04, and 0.08) alloys. By introducing a small quantity of Zn element, the structural transformation temperature of the MnCoGe alloy is greatly reduced and a first-order magnetostructural transition is observed. Further increasing the Zn concentration results in a second-order ferromagnetic transition. Large room-temperature magnetocaloric effects with small magnetic hysteresis are obtained in alloys with x = 0.01 and 0.02, which suggests their potential application in magnetic refrigeration.

[1]  Y. Chai,et al.  Martensitic transformation and giant magnetic entropy change in Ni 42.8 Mn 40.3 Co 5.7 Sn 11.2 alloy , 2014 .

[2]  Youwei Du,et al.  Martensitic transformation and related magnetic effects in Ni—Mn-based ferromagnetic shape memory alloys , 2013 .

[3]  J. L. Chen,et al.  Giant magnetocaloric effect in isostructural MnNiGe-CoNiGe system by establishing a Curie-temperature window , 2013, 1303.7282.

[4]  Zhida Han,et al.  Magnetostructural transformation in Mn1+xNi1−xGe and Mn1−xNi1+xGe alloys , 2012 .

[5]  I. Dubenko,et al.  Giant magnetocaloric effects near room temperature in Mn1 − xCuxCoGe , 2012 .

[6]  J. L. Chen,et al.  Phase diagram, ferromagnetic martensitic transformation and magnetoresponsive properties of Fe-doped MnCoGe alloys , 2012, 1211.6815.

[7]  王敦辉,et al.  Effects of the Mn/Co ratio on the magnetic transition and magnetocaloric properties of Mn 1+ x Co 1- x Ge alloys , 2011 .

[8]  N. Trung,et al.  Pressure-tuned magnetocaloric effect in Mn0.93Cr0.07CoGe , 2011 .

[9]  Huibin Xu,et al.  Stable magnetostructural coupling with tunable magnetoresponsive effects in hexagonal ferromagnets , 2011, Nature Communications.

[10]  Youwei Du,et al.  The magnetostructural transformation and magnetocaloric effect in Co-doped MnNiGe1.05 alloys , 2010 .

[11]  N. Trung,et al.  Giant magnetocaloric effects by tailoring the phase transitions , 2010 .

[12]  N. Trung,et al.  From single- to double-first-order magnetic phase transition in magnetocaloric Mn1−xCrxCoGe compounds , 2010 .

[13]  J. L. Chen,et al.  Vacancy-tuned paramagnetic/ferromagnetic martensitic transformation in Mn-poor Mn1-xCoGe alloys , 2010, 1003.0489.

[14]  N. Trung,et al.  Tunable thermal hysteresis in MnFe(P,Ge) compounds , 2009 .

[15]  V. Amaral,et al.  The effect of magnetic irreversibility on estimating the magnetocaloric effect from magnetization measurements , 2009 .

[16]  P. Ranke,et al.  Magnetocaloric effect around a magnetic phase transition , 2008 .

[17]  Jirong Sun,et al.  Determination of the entropy changes in the compounds with a first-order magnetic transition , 2007 .

[18]  Yoshiyuki Kawazoe,et al.  Vacancy induced structural and magnetic transition in MnCo1−xGe , 2006 .

[19]  K. Buschow,et al.  Structural and Magnetic Properties of MnFe$_1 - rm x$Co$_rm x$Ge Compounds , 2006, IEEE Transactions on Magnetics.

[20]  X. Moya,et al.  Inverse magnetocaloric effect in ferromagnetic Ni–Mn–Sn alloys , 2005, Nature materials.

[21]  Kazuo Watanabe,et al.  Field-Induced Martensitic Transformation in New Ferromagnetic Shape Memory Compound Mn1.07Co0.92Ge , 2004 .

[22]  K. Gschneidner,et al.  Recent developments in magnetocaloric materials , 2003 .

[23]  F. Hu,et al.  Influence of negative lattice expansion and metamagnetic transition on magnetic entropy change in the compound LaFe11.4Si1.6 , 2001 .

[24]  Karl A. Gschneidner,et al.  Magnetocaloric effect and magnetic refrigeration , 1999 .

[25]  J. Glanz Making a Bigger Chill With Magnets , 1998, Science.

[26]  T. Kaneko,et al.  Magneto-volume effect of MnCo1-xGe(0≤x≤0.2) , 1995 .

[27]  A. Arrott Criterion for Ferromagnetism from Observations of Magnetic Isotherms , 1957 .

[28]  Youwei Du,et al.  Large roomtemperature magnetocaloric effect with negligible magnetic hysteresis losses in Mn1−xVxCoGe alloys , 2012 .