Gravity Recovery and Climate Experiment (GRACE): Detection of Ice Mass Loss, Terrestrial Mass Changes, and Ocean Mass Gains

The gravity field of the Earth, caused by the distribution of masses inside and on the surface of the Earth, changes in time due to the redistribution of mass. Such mass fluxes can be due both to natural processes (such as the seasonal water cycle, ocean dynamics, or atmospheric variations), as well as due to human actions, such as the systematic withdrawal of groundwater for human consumption. The ability to measure such changes globally is of great significance for understanding the environmental dimension of sustainability.

[1]  B. Tapley,et al.  Alaskan mountain glacial melting observed by satellite gravimetry , 2006 .

[2]  Low-frequency exchange of mass between ocean basins , 2009 .

[3]  Michael B. Heflin,et al.  Simultaneous estimation of global present-day water transport and glacial isostatic adjustment , 2010 .

[4]  A. Eicker,et al.  ITG-GRACE: Global Static and Temporal Gravity Field Models from GRACE Data , 2010 .

[5]  Archie Paulson,et al.  FAST TRACK PAPER: Inference of mantle viscosity from GRACE and relative sea level data , 2007 .

[6]  Koji Matsuo,et al.  Time-variable ice loss in Asian high mountains from satellite gravimetry , 2010 .

[7]  J. O'keefe,et al.  The gravitational field of the earth , 1959 .

[8]  Tong Lee,et al.  A record‐high ocean bottom pressure in the South Pacific observed by GRACE , 2011 .

[9]  Sean Swenson,et al.  Assessing high-latitude winter precipitation from global precipitation analyses using GRACE. , 2010 .

[10]  D. Chambers,et al.  Estimating Geocenter Variations from a Combination of GRACE and Ocean Model Output , 2008 .

[11]  M. Rodell,et al.  Assimilation of GRACE Terrestrial Water Storage Data into a Land Surface Model: Results for the Mississippi River Basin , 2008 .

[12]  Chen Ji,et al.  Implications of postseismic gravity change following the great 2004 Sumatra-Andaman earthquake from the regional harmonic analysis of GRACE intersatellite tracking data , 2008 .

[13]  F. Landerer,et al.  Terrestrial water budget of the Eurasian pan‐Arctic from GRACE satellite measurements during 2003–2009 , 2010 .

[14]  V. M. Tiwari,et al.  Dwindling groundwater resources in northern India, from satellite gravity observations , 2009 .

[15]  D. Chambers Evaluation of new GRACE time‐variable gravity data over the ocean , 2006 .

[16]  R. Ponte,et al.  Estimating weights for the use of time-dependent gravity recovery and climate experiment data in constraining ocean models , 2008 .

[17]  Qile Zhao,et al.  DEOS Mass Transport model (DMT-1) based on GRACE satellite data: methodology and validation , 2010 .

[18]  Bob E. Schutz,et al.  Glacial Isostatic Adjustment over Antarctica from combined ICESat and GRACE satellite data , 2009 .

[19]  M. Cheng,et al.  Variations in the Earth's oblateness during the past 28 years , 2004 .

[20]  W. Sjogren,et al.  Mascons: Lunar Mass Concentrations , 1968, Science.

[21]  Maik Thomas,et al.  Simulation and observation of global ocean mass anomalies , 2007 .

[22]  Byron D. Tapley,et al.  The 2009 exceptional Amazon flood and interannual terrestrial water storage change observed by GRACE , 2010 .

[23]  P. Knudsen,et al.  A global mean dynamic topography and ocean circulation estimation using a preliminary GOCE gravity model , 2011 .

[24]  N. G. Val’es,et al.  CNES/GRGS 10-day gravity field models (release 2) and their evaluation , 2010 .

[25]  Peter Steigenberger,et al.  Improved Constraints on Models of Glacial Isostatic Adjustment: A Review of the Contribution of Ground-Based Geodetic Observations , 2010 .

[26]  F. Bryan,et al.  Time variability of the Earth's gravity field: Hydrological and oceanic effects and their possible detection using GRACE , 1998 .

[27]  V. Menezes,et al.  Double‐celled subtropical gyre in the South Atlantic Ocean: Means, trends, and interannual changes , 2011 .

[28]  R. Dietrich,et al.  Signal and error in mass change inferences from GRACE: the case of Antarctica , 2009 .

[29]  S. Swenson,et al.  Post‐processing removal of correlated errors in GRACE data , 2006 .

[30]  Eric Rignot,et al.  Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise , 2011 .

[31]  R. Ray,et al.  Qualitative comparisons of global ocean tide models by analysis of intersatellite ranging data , 2009 .

[32]  M. Bevis,et al.  Spread of ice mass loss into northwest Greenland observed by GRACE and GPS , 2010 .

[33]  R. Ray,et al.  Assimilation of GRACE tide solutions into a numerical hydrodynamic inverse model , 2009 .

[34]  Richard Biancale,et al.  Separation of coseismic and postseismic gravity changes for the 2004 Sumatra–Andaman earthquake from 4.6 yr of GRACE observations and modelling of the coseismic change by normal-modes summation , 2009 .

[35]  J. Famiglietti,et al.  Satellite-based estimates of groundwater depletion in India , 2009, Nature.

[36]  Jean-Charles Marty,et al.  Temporal gravity field models inferred from GRACE data , 2007 .

[37]  E. Leuliette,et al.  Closing the sea level rise budget with altimetry, Argo, and GRACE , 2009 .

[38]  M. Watkins,et al.  GRACE Measurements of Mass Variability in the Earth System , 2004, Science.

[39]  Jean-François Crétaux,et al.  Recent hydrological behavior of the East African great lakes region inferred from GRACE, satellite altimetry and rainfall observations , 2010 .

[40]  J. Famiglietti,et al.  Improving parameter estimation and water table depth simulation in a land surface model using GRACE water storage and estimated base flow data , 2010 .

[41]  R. Muench,et al.  Tides of the northwestern Ross Sea and their impact on dense outflows of Antarctic Bottom Water , 2009 .

[42]  Shin‐Chan Han,et al.  One centimeter-level observations of diurnal ocean tides from global monthly mean time-variable gravity fields , 2010 .

[43]  A. Cazenave,et al.  GLOBAL-SCALE INTERACTIONS BETWEEN THE SOLID EARTH AND ITS FLUID ENVELOPES AT THE SEASONAL TIME SCALE , 1999 .

[44]  Byron D. Tapley,et al.  Seasonal variations in low degree zonal harmonics of the Earth's gravity field from satellite laser ranging observations , 1999 .

[45]  Anny Cazenave,et al.  Regional and interannual variability in sea level over 2002–2009 based on satellite altimetry, Argo float data and GRACE ocean mass , 2010 .

[46]  Axel Rülke,et al.  On-land ice loss and glacial isostatic adjustment at the drake passage: 2003-2009 , 2011 .

[47]  Guillaume Ramillien,et al.  Comparison of in situ bottom pressure data with GRACE gravimetry in the Crozet‐Kerguelen region , 2006 .

[48]  S. Swenson,et al.  Satellites measure recent rates of groundwater depletion in California's Central Valley , 2011 .

[49]  R. Nerem,et al.  Recent changes in the Earth's oblateness driven by Greenland and Antarctic ice mass loss , 2011 .

[50]  Scott B. Luthcke,et al.  Regional gravity decrease after the 2010 Maule (Chile) earthquake indicates large‐scale mass redistribution , 2010 .

[51]  Guillaume Ramillien,et al.  External geophysics, climate and environment Global land water storage change from GRACE over 2002-2009; Inference on sea level , 2010 .

[52]  John M. Melack,et al.  Seasonal water storage on the Amazon floodplain measured from satellites , 2010 .

[53]  I. Fukumori,et al.  Recent Earth Oblateness Variations: Unraveling Climate and Postglacial Rebound Effects , 2002, Science.

[54]  S. Swenson,et al.  Accuracy of GRACE mass estimates , 2006 .

[55]  J. Kusche,et al.  Changes in total ocean mass derived from GRACE, GPS, and ocean modeling with weekly resolution , 2009 .

[56]  A. Cazenave,et al.  Time-variable gravity from space and present-day mass redistribution in theEarth system , 2010 .

[57]  M. Tamisiea,et al.  Self‐attraction and loading effects on ocean mass redistribution at monthly and longer time scales , 2011 .

[58]  T. Oki,et al.  Dynamics of surface water storage in the Amazon inferred from measurements of inter‐satellite distance change , 2009 .

[59]  W. Keller,et al.  GRACE hydrological monitoring of Australia: Current limitations and future prospects , 2009 .

[60]  B. Chao,et al.  Detection of a Large-Scale Mass Redistribution in the Terrestrial System Since 1998 , 2002, Science.

[61]  Gilles Larnicol,et al.  New CNES‐CLS09 global mean dynamic topography computed from the combination of GRACE data, altimetry, and in situ measurements , 2011 .

[62]  Don Chambers,et al.  Analysis of seasonal ocean bottom pressure variability in the Gulf of Thailand from GRACE , 2010 .

[63]  Jean-François Crétaux,et al.  Seasonal and interannual geocenter motion from SLR and DORIS measurements: Comparison with surface loading data , 2002 .

[64]  V. Zlotnicki,et al.  Australian water mass variations from GRACE data linked to Indo-Pacific climate variability , 2011 .

[65]  Byron D. Tapley,et al.  Interannual variability of Greenland ice losses from satellite gravimetry , 2011 .

[66]  Guillaume Ramillien,et al.  Basin‐scale, integrated observations of the early 21st century multiyear drought in southeast Australia , 2009 .

[67]  B. D. Tapley,et al.  Satellite Gravity Measurements Confirm Accelerated Melting of Greenland Ice Sheet , 2006, Science.

[68]  M. R. van den Broeke,et al.  Partitioning Recent Greenland Mass Loss , 2009, Science.

[69]  Jens Wickert,et al.  The Falling Lake Victoria Water Level: GRACE, TRIMM and CHAMP Satellite Analysis of the Lake Basin , 2008 .

[70]  S. Greenhalgh,et al.  Approximating the wave moduli of double porosity media at low frequencies by a single Zener or Kelvin-Voigt element , 2010 .

[71]  M. Tamisiea,et al.  Combination of geodetic observations and models for glacial isostatic adjustment fields in Fennoscandia , 2010 .

[72]  D. Rowlands,et al.  Recent glacier mass changes in the Gulf of Alaska region from GRACE mascon solutions , 2008, Journal of Glaciology.

[73]  R. Steven Nerem,et al.  Preliminary observations of global ocean mass variations with GRACE , 2004 .

[74]  I. Velicogna Increasing rates of ice mass loss from the Greenland and Antarctic ice sheets revealed by GRACE , 2009 .

[75]  John Wahr,et al.  Monitoring the water balance of Lake Victoria, East Africa, from space. , 2009 .

[76]  Grzegorz Michalak,et al.  GFZ GRACE Level-2 Processing Standards Document for Level-2 Product Release 0005 , 2012 .

[77]  R. Ponte,et al.  Bottom pressure changes around Antarctica and wind‐driven meridional flows , 2009 .

[78]  I. Sasgen,et al.  Combined GRACE and InSAR estimate of West Antarctic ice mass loss , 2010 .

[79]  Alexander Y. Sun,et al.  Inferring aquifer storage parameters using satellite and in situ measurements: Estimation under uncertainty , 2010 .

[80]  Josh K. Willis,et al.  Balancing the Sea Level Budget , 2011 .

[81]  Don P. Chambers,et al.  Observing seasonal steric sea level variations with GRACE and satellite altimetry , 2006 .

[82]  B. Tapley,et al.  Seasonal global mean sea level change from satellite altimeter, GRACE, and geophysical models , 2005 .

[83]  Carsten Braun,et al.  Sharply increased mass loss from glaciers and ice caps in the Canadian Arctic Archipelago , 2011, Nature.

[84]  Byron D. Tapley,et al.  Patagonia Icefield melting observed by Gravity Recovery and Climate Experiment (GRACE) , 2007 .

[85]  Byron D. Tapley,et al.  Accelerated Antarctic ice loss from satellite gravity measurements , 2009 .

[86]  R. Steven Nerem,et al.  Ocean mass from GRACE and glacial isostatic adjustment , 2010 .

[87]  D. Stammer,et al.  Ocean bottom pressure variations estimated from gravity, nonsteric sea surface height and hydrodynamic model simulations , 2011 .

[88]  Guillaume Ramillien,et al.  Glacial isostatic adjustment and nonstationary signals observed by GRACE , 2009 .

[89]  Steven M. Klosko,et al.  Global Mass Flux Solutions from GRACE: A Comparison of Parameter Estimation Strategies - Mass Concentrations Versus Stokes Coefficients , 2010 .

[90]  F. Landerer,et al.  Accuracy of scaled GRACE terrestrial water storage estimates , 2012 .

[91]  D. Chambers,et al.  Mean Dynamic Topography of the Ocean Derived from Satellite and Drifting Buoy Data Using Three Different Techniques , 2009 .

[92]  R. Parker The Theory of Ideal Bodies for Gravity Interpretation , 2007 .

[93]  A. Cazenave,et al.  Estimation of steric sea level variations from combined GRACE and Jason-1 data , 2007 .

[94]  W. Peltier,et al.  On the origins of Earth rotation anomalies: New insights on the basis of both “paleogeodetic” data and Gravity Recovery and Climate Experiment (GRACE) data , 2009 .

[95]  S. Jayne,et al.  A comparison of in situ bottom pressure array measurements with GRACE estimates in the Kuroshio Extension , 2008 .

[96]  Understanding the annual cycle of the Arctic Ocean bottom pressure , 2010 .

[97]  Gregory C. Johnson,et al.  In Situ Data Biases and Recent Ocean Heat Content Variability , 2009 .

[98]  Olaf Boebel,et al.  Validation of GRACE Gravity Fields by In-Situ Data of Ocean Bottom Pressure , 2010 .

[99]  S. Swenson,et al.  Methods for inferring regional surface‐mass anomalies from Gravity Recovery and Climate Experiment (GRACE) measurements of time‐variable gravity , 2002 .

[100]  R. Kwok,et al.  Recent trends in Arctic Ocean mass distribution revealed by GRACE , 2007 .

[101]  M. Tamisiea,et al.  Impact of self-attraction and loading on the annual cycle in sea level , 2010 .

[102]  M. Rothacher,et al.  System Earth via Geodetic-Geophysical Space Techniques , 2010 .

[103]  Jens Schröter,et al.  Measuring ocean mass variability from satellite gravimetry , 2011 .

[104]  W. Peltier GLOBAL GLACIAL ISOSTASY AND THE SURFACE OF THE ICE-AGE EARTH: The ICE-5G (VM2) Model and GRACE , 2004 .

[105]  I. Fukumori,et al.  Antarctic Circumpolar Current Transport Variability during 2003–05 from GRACE , 2007 .