Low grade waste heat recovery using heat pumps and power cycles

Thermal energy represents a large part of the global energy usage and about 43% of this energy is used for industrial applications. Large amounts are lost via exhaust gases, liquid streams and cooling water while the share of low temperature waste heat is the largest.

[1]  D. M. van de Bor,et al.  Optimal performance of compression–resorption heat pump systems , 2014 .

[2]  A. B. Little,et al.  Comparative assessment of alternative cycles for waste heat recovery and upgrade , 2011 .

[3]  Anton A. Kiss,et al.  Distillation technology - still young and full of breakthrough opportunities , 2014 .

[4]  Carlos A. Infante Ferreira,et al.  Towards energy efficient distillation technologies – Making the right choice , 2012 .

[5]  Johann Fischer,et al.  Comparison of trilateral cycles and organic Rankine cycles , 2011 .

[6]  Geoffrey P. Hammond,et al.  Heat recovery opportunities in UK industry , 2014 .

[7]  Anton A. Kiss,et al.  Advanced Distillation Technologies: Design, Control and Applications , 2013 .

[8]  Russell McKenna,et al.  Industrial energy efficiency: Interdisciplinary perspectives on the thermodynamic, technical and economic constraints , 2009 .

[9]  D. L. Hodgett,et al.  IEA common study on advanced heat pump systems, technology survey. Part 1: Research and development trends , 1982 .

[10]  Chechet Biliyok,et al.  Trilateral Flash Cycle for Recovery of Power from a Finite Low-Grade Heat Source , 2014 .

[11]  M. McLinden,et al.  NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 8.0 , 2007 .

[12]  Moya Rivera Jose Antonio,et al.  Heat and Cooling Demand and Market Perspective , 2012 .

[13]  V. Mučić Two media resorption compression heat pump with solution circuit , 1985 .

[14]  Thore Berntsson,et al.  Optimization study of the compression/absorption cycle , 1991 .

[15]  Wenming Yang,et al.  Advances in heat pump systems: A review , 2010 .

[16]  Christos N. Markides,et al.  The role of pumped and waste heat technologies in a high-efficiency sustainable energy future for the UK , 2013 .

[17]  Christos N. Markides,et al.  Dynamic modelling of a two-phase thermofluidic oscillator for efficient low grade heat utilization: Effect of fluid inertia , 2012 .

[18]  D. M. van de Bor,et al.  Quick selection of industrial heat pump types including the impact of thermodynamic losses , 2013 .

[19]  Arif Hepbasli,et al.  Performance assessment of a geothermally heated building , 2009 .

[20]  Yousef S.H. Najjar,et al.  Recovery and utilization of waste heat , 1993 .

[21]  Christos N. Markides,et al.  Modelling of a two-phase thermofluidic oscillator for low-grade heat utilisation: Accounting for irreversible thermal losses , 2013 .

[22]  Thore Berntsson,et al.  The compression/absorption heat pump cycle—conceptual design improvements and comparisons with the compression cycle , 2002 .

[23]  Rosemary Norman,et al.  Low grade thermal energy sources and uses from the process industry in the UK , 2012 .

[24]  Vasile Minea,et al.  Hybrid absorption heat pump with ammonia/water mixture – Some design guidelines and district heating application , 2006 .

[25]  Per Lundqvist,et al.  Comparison and analysis of performance using Low Temperature Power Cycles , 2013 .

[26]  Raoul Milani Low-temperature heat-recovery in an oil refinery , 1990 .

[27]  D. V. Zaytsev Development of wet compressor for application in compression-resorption heat pumps , 2003 .

[28]  Christos N. Markides,et al.  A dynamic model for the efficiency optimization of an oscillatory low grade heat engine , 2011 .

[29]  L. C. M. Itard,et al.  Considerations when modelling compression/resorption heat pumps , 1994 .

[30]  Scott Backhaus,et al.  Travelling-wave thermoacoustic electricity generator using an ultra-compliant alternator for utilization of low-grade thermal energy , 2012 .