A Single-Loop High-Order Sliding Mode Controller for a Missile Interceptor

The guidance and control (G&C) on a missile interceptor orchestrate the vehicle's functional subsystems to minimize miss distance. In contrast to the traditional cascaded G&C loop structure that handles the guidance and control separately, a single-loop and single control law govern the fin actuation. The high relative degree of a missile engagement scenario makes controller design more difficult. The use of higher order sliding mode differentiators mitigates the problem. The objective of this work is to develop a robust, high-order sliding mode controller that intercepts maneuvering targets using minimal information. Nonlinear pitch plane engagement kinematics and linear pitch plane missile dynamics are defined for controller development and simulation purposes. Through simulation the control law is shown to be simple and intuitive, only requiring relative normal velocity for state feedback, meaning it can work in a GPS-denied environment.

[1]  Nathan D. Richards,et al.  Adaptive, Integrated Guidance and Control for Missile Interceptors , 2004 .

[2]  Ernest J. Ohlmeyer,et al.  Finite-Horizon Robust Integrated Guidance-Control of A Moving-Mass Actuated Kinetic Warhead , 2006 .

[3]  Arie Levant,et al.  Principles of 2-sliding mode design , 2007, Autom..

[4]  R. Longchamp,et al.  Application of sliding-mode control to air-air interception problem , 1990 .

[5]  Arie Levant,et al.  Quasi-continuous high-order sliding-mode controllers , 2005, IEEE Transactions on Automatic Control.

[6]  W. Marsden I and J , 2012 .

[7]  Christopher Edwards,et al.  Sliding Mode Control and Observation , 2013 .

[8]  Yuri B. Shtessel,et al.  Integrated Higher-Order Sliding Mode Guidance and Autopilot for Dual Control Missiles , 2009 .

[9]  Di Zhou,et al.  Adaptive Sliding-Mode Guidance of a Homing Missile , 1999 .

[10]  Min-Jea Tahk,et al.  Integrated backstepping design of missile guidance and control with robust disturbance observer , 2006, 2006 SICE-ICASE International Joint Conference.

[11]  James R. Cloutier,et al.  Integrated Estimation, Guidance, and Control System Design Using Game Theoretic Approach , 1992, 1992 American Control Conference.

[12]  Youdan Kim,et al.  Design of Missile Guidance Law via Variable Structure Control , 2000 .

[13]  Michael B. McFarland,et al.  Integrated missile guidance law and autopilot design using linear optimal control , 2000 .

[14]  Moshe Idan,et al.  Sliding-Mode Control for Integrated Missile Autopilot Guidance , 2004 .

[15]  A. Levant,et al.  Guidance and Control of Missile Interceptor using Second-Order Sliding Modes , 2009, IEEE Transactions on Aerospace and Electronic Systems.

[16]  Christopher Edwards,et al.  Sliding mode control : theory and applications , 1998 .

[17]  D. S. Malyevac,et al.  Integrated Guidance and Control of Moving-Mass Actuated Kinetic Warheads , 2004 .

[18]  Igorʹ. Boĭko Discontinuous Control Systems , 2008 .

[19]  Ernest J. Ohlmeyer,et al.  Optimal Fixed-Interval Integrated Guidance-Control Laws for Hit-to-Kill Missiles , 2003 .

[20]  Neil F. Palumbo,et al.  Integrated missile guidance and control: a state dependent Riccati differential equation approach , 1999, Proceedings of the 1999 IEEE International Conference on Control Applications (Cat. No.99CH36328).

[21]  Leonid M. Fridman,et al.  History-dependent modified sliding mode interception strategies with maximal capture zone , 2012, J. Frankl. Inst..

[22]  Arie Levant,et al.  Higher-order sliding modes, differentiation and output-feedback control , 2003 .

[23]  Nathan Harl,et al.  Sliding Mode Integrated Missile Guidance and Control , 2010 .

[24]  A. Levant Sliding order and sliding accuracy in sliding mode control , 1993 .