Evidence for the formation of singly bonded dimers during the reductive electrochemistry of methanofullerenes.

Four methanofullerene derivatives, with phosphonate or sulfone groups attached to a C(60) core through a Bingel procedure, were synthesized to probe their stability upon electrolytic reduction. Derivatives 1 and 2 are the most stable upon electroreduction and do not exhibit retro-cyclopropanation reactions until more than three electrons per C(60) derivative are transferred. The cyclopropane ring is then removed and C(60)(>CH(2))(n) (n=1-3) products result from reactions of the trianion of C(60) with the solvent, CH(2)Cl(2). The situation with diphosphonate 3 or phosphonatecarboxylate 4 is dramatically different. For 3, quantitative retro-cyclopropanation occurs when 2.8 e(-) per molecule are transferred. In the case of 4, when more than two electrons per molecule are transferred, there is evidence of the reversible formation of a very stable intermediate, which is oxidized at a potential 500 mV more positive than the first fullerene-based reduction of the parent compound. Electrolysis of a simple C(70)-Bingel monoadduct (5) also exhibits the formation of a similar intermediate. On the basis of cyclic voltammetry, ESR spectroscopy, and MALDI analysis of products, the intermediate observed during the electrolysis of compounds 4 and 5 is assigned to a dimeric structure.

[1]  Maurizio Carano,et al.  Mechanisms of electrochemically-induced retro-cyclopropanation reactions of fullerene derivatives using digital simulations. , 2003, Chemistry.

[2]  R. Lyubovskaya,et al.  The formation of a single-bonded (C70−)2 dimer in a new ionic multicomponent complex of cyclotriveratrylene: (Cs+)2(C70−)2·CTV·(DMF)7(C6H6)0.75 , 2002 .

[3]  Y. Murata,et al.  Synthesis, X-ray structure, and properties of the singly bonded C60 dimer having diethoxyphosphorylmethyl groups utilizing the chemistry of C60(2-). , 2002, Organic letters.

[4]  V. V. Yanilkin,et al.  ESR parameters and transformations of the products of reduction of methanofullerenes , 2002 .

[5]  G. P. Moss,et al.  Nomenclature for the C60-Ih and C70-D5h(6) fullerenes (IUPAC Recommendations 2002) , 2002, Chemistry International.

[6]  V. V. Yanilkin,et al.  Retro-Bingel reaction in the electrochemical reduction of bis(dialkoxyphosphoryl)methanofullerenes , 2002 .

[7]  He-sun Zhu,et al.  Organophosphorus chemistry of fullerene: synthesis and biological effects of organophosphorus compounds of C60 , 2001 .

[8]  M. Herranz,et al.  Reductive electrochemistry of spiromethanofullerenes. , 2001, The Journal of organic chemistry.

[9]  B. Iorga,et al.  Controlled monohalogenation of phosphonates , 2001 .

[10]  Andreas Hirsch,et al.  C60 Hexakisadducts with an Octahedral Addition Pattern − A New Structure Motif in Organic Chemistry , 2001 .

[11]  L. Echegoyen,et al.  Reductive electrolysis of [60]fullerene mono-methanoadducts in THF leads to the formation of bis-adducts in high yields , 2001 .

[12]  A. Hirsch,et al.  Electrochemical Studies of Seven Regioisomers of Tris[di(ethoxycarbonyl)methano][60]fullerene: Umpolung of Regiochemistry in Retro-Bingel Reactions and Walk-on-the-Sphere Rearrangements§ , 2000 .

[13]  D. Guldi Fullerenes: three dimensional electron acceptor materials , 2000 .

[14]  Diederich,et al.  Selective electrolytic removal of bis(alkoxycarbonyl)methano addends from C60 bis-adducts and electrochemical stability of C70 derivatives , 2000, Chemistry.

[15]  He-sun Zhu,et al.  Synthesis and optical properties of tetraethyl methano[60]fullerenediphosphonate , 2000 .

[16]  V. V. Yanilkin,et al.  Electrochemical reduction of some methanofullerenes. On the mechanism of the retro-Bingel reaction , 2000 .

[17]  Stephen R. Wilson,et al.  Preparation of [60]fullerene tris-malonate adducts by addend removal from higher adducts via the electrochemical retro-Bingel reaction , 2000 .

[18]  L. Echegoyen,et al.  Instability of [60]fullerene anions in dichloromethane: a synthetic avenue to C60>(CH2)n methanofullerenes , 2000 .

[19]  L. Echegoyen,et al.  Adduct removal from methanofullerenes viareductive electrochemistry , 2000 .

[20]  Chien‐Hong Cheng,et al.  Fullerene Derivatives Bearing a Phosphite Ylide, Phosphonate, Phosphine Oxide, and Phosphonic Acid: Synthesis and Reactivities. , 1999, The Journal of organic chemistry.

[21]  Wenyuan Qian,et al.  Auf dem Weg zur vollständigen Kontrolle der sechsfachen Funktionalisierung von Buckminsterfulleren (C60) an oktaedrischen Positionen , 1999 .

[22]  A. Herrmann,et al.  Die Chemie von C84: Trennung von drei Konstitutionsisomeren des Fullerens C84 und der Enantiomere von D2-C84 durch die „Bingel-Retro-Bingel”-Strategie , 1999 .

[23]  F. Wudl,et al.  Bucky Light Bulbs: White Light Electroluminescence from a Fluorescent C60 Adduct−Single Layer Organic LED , 1999 .

[24]  F. Diederich,et al.  Templated Regioselective and Stereoselective Synthesis in Fullerene Chemistry , 1999 .

[25]  M. Iyoda,et al.  Efficient synthesis of fullerene dimers containing a fluoroalkyl group , 1999 .

[26]  F. D’Souza,et al.  N-(2,4-Dinitrophenyl)-2-phenylfulleropyrrolidine: an electroactive organofullerene dyad , 1999 .

[27]  L. Sánchez,et al.  C(60)-Based Electroactive Organofullerenes. , 1998, Chemical reviews.

[28]  S. Fukuzumi,et al.  FORMATION OF C60 ADDUCTS WITH TWO DIFFERENT ALKYL GROUPS VIA COMBINATION OF ELECTRON TRANSFER AND SN2 REACTIONS , 1998 .

[29]  F. Diederich,et al.  Walk on the Sphere: Electrochemically Induced Isomerization of C60 Bis-adducts by Migration of Di(alkoxycarbonyl)methano Bridges , 1998 .

[30]  F. Diederich,et al.  Preparation of Enantiomerically Pure C76 with a General Electrochemical Method for the Removal of Di(alkoxycarbonyl)methano Bridges from Methanofullerenes: The Retro-Bingel Reaction , 1998 .

[31]  F. Diederich,et al.  Redox Characteristics of Covalent Derivatives of the Higher Fullerenes C70, C76, and C78 , 1998 .

[32]  A. Herrmann,et al.  HERSTELLUNG VON ENANTIOMERENREINEM C76 DURCH RETRO-BINGEL-REAKTION , 1998 .

[33]  L. Echegoyen,et al.  Electrochemistry of Fullerenes and Their Derivatives , 1998 .

[34]  C. Rovira,et al.  SYNTHESIS AND ELECTROCHEMISTRY OF ELECTRONEGATIVE SPIROANNELATED METHANOFULLERENES : THEORETICAL UNDERPINNING OF THE ELECTRONIC EFFECT OF ADDENDS AND A REDUCTIVE CYCLOPROPANE RING-OPENING REACTION , 1997 .

[35]  T. Müller,et al.  Concise Route to Symmetric Multiadducts of [60]Fullerene: Preparation of an Equatorial Tetraadduct by Orthogonal Transposition , 1997 .

[36]  F. Diederich,et al.  Multiple Adducts of C60 by Tether‐Directed Remote Functionalization and synthesis of soluble derivatives of new carbon allotropes Cn(60+5) , 1997 .

[37]  E. Yashima,et al.  Selective Functionalization on [60]Fullerene Governed by Tether Length , 1997 .

[38]  M. Prato,et al.  Cycloaddition of nitrile oxides to [60]fullerene , 1997 .

[39]  D. Schwarzenbach,et al.  Eine topochemisch kontrollierte, regiospezifische Fulleren‐Bisfunktionalisierung , 1996 .

[40]  Y. Murata,et al.  Synthesis, properties, and reactions of a stable carbanion derived from alkynyldihydrofullerene: 1-octynyl-C60 carbanion , 1996 .

[41]  E. Ōsawa,et al.  Internal rotation in the singly bonded dimers of substituted C{sub 60}. A molecular lever , 1996 .

[42]  E. Nakamura,et al.  Regio- and diastereo-controlled double cycloaddition to [60] fullerene: one-step synthesis of Cs and C2 chiral organofullerenes with new tris-annulating reagents , 1996 .

[43]  L. Echegoyen,et al.  A NEW ROUTE FOR THE SELECTIVE SYNTHESIS OF 6,6-METHANOFULLERENES. ELECTROSYNTHESIS OF C61HCME3 AND C61HCN , 1996 .

[44]  A. Pénicaud,et al.  Single crystal synthesis of [(C6H5)4P]2[C70][I] by electrocrystallization and experimental determination of the g-value anisotropy of C70•- and C60•- at 4.2 K , 1995 .

[45]  M. Baumgarten,et al.  REDOX STATES OF C-60 AND C-70 MEASURED BY EPR AND OPTICAL-ABSORPTION SPECTROSCOPY .2. , 1995 .

[46]  A. Hirsch,et al.  Reaction of [60]fullerene with morpholine and piperidine: preferred 1,4-additions and fullerene dimer formation , 1995 .

[47]  M. Iyoda,et al.  Reactions of fullerols and fullerene dimer containing perfluoroalkyl groups with tributyltin hydride , 1994 .

[48]  François Diederich,et al.  Spacer‐kontrollierte Fernfunktionalisierung von Buckminsterfulleren: regiospezifische Bildung eines Hexaadduktes , 1994 .

[49]  Y. Achiba,et al.  Reaction of C60 with diacyl peroxides containing perfluoroalkyl groups. The first example of electron transfer reaction via C60+· in solution , 1993 .

[50]  N. Herron,et al.  Production of Perfluoroalkylated Nanospheres from Buckminsterfullerene , 1993, Science.

[51]  Carsten Bingel,et al.  Cyclopropanierung von Fullerenen , 1993 .

[52]  E. Johnston,et al.  Synthesis, chemistry, and properties of a monoalkylated buckminsterfullerene derivative, tert-BuC60 anion , 1992 .

[53]  E. Wasserman,et al.  The dimerization of fullerene RC60 radicals [R = alkyl] , 1992 .

[54]  L. Chibante,et al.  Spectroelectrochemical study of the C60 and C70 fullerenes and their mono-, di-, tri-, and tetraanions , 1991 .

[55]  L. Khawli,et al.  Synthesis of halogenated phosphonoacetate esters , 1986 .

[56]  F. Montanari,et al.  Stereochemistry of .alpha.-halo sulfoxides. II. Interdependent stereochemistry at sulfur and .alpha.-carbon in the .alpha.-halogenation of sulfoxides , 1973 .