The ultraspherical spectral element method

We introduce a novel spectral element method based on the ultraspherical spectral method and the hierarchical Poincare-Steklov scheme for solving second-order linear partial differential equations on polygonal domains with unstructured quadrilateral or triangular meshes. Properties of the ultraspherical spectral method lead to almost banded linear systems, allowing the element method to be competitive in the high-polynomial regime ($p > 5$). The hierarchical Poincare-Steklov scheme enables precomputed solution operators to be reused, allowing for fast elliptic solves in implicit and semi-implicit time-steppers. The resulting spectral element method achieves an overall computational complexity of $\mathcal{O}(p^4/h^3)$ for mesh size $h$ and polynomial order $p$, enabling $hp$-adaptivity to be efficiently performed. We develop an open-source software system, ultraSEM, for flexible, user-friendly spectral element computations in MATLAB.

[1]  Andrew T. T. McRae,et al.  Firedrake: automating the finite element method by composing abstractions , 2015, ACM Trans. Math. Softw..

[2]  Mark Ainsworth,et al.  An adaptive refinement strategy for hp -finite element computations , 1998 .

[3]  A. Yeiser,et al.  A spectral element method for meshes with skinny elements , 2018, 1803.10353.

[4]  I. Babuska,et al.  Rairo Modélisation Mathématique Et Analyse Numérique the H-p Version of the Finite Element Method with Quasiuniform Meshes (*) , 2009 .

[5]  Per-Gunnar Martinsson,et al.  A direct solver for variable coefficient elliptic PDEs discretized via a composite spectral collocation method , 2013, J. Comput. Phys..

[6]  Sheehan Olver,et al.  The automatic solution of partial differential equations using a global spectral method , 2014, J. Comput. Phys..

[7]  Joachim Schöberl,et al.  New shape functions for triangular p-FEM using integrated Jacobi polynomials , 2006, Numerische Mathematik.

[8]  A. Patera A spectral element method for fluid dynamics: Laminar flow in a channel expansion , 1984 .

[9]  George Em Karniadakis,et al.  A NEW TRIANGULAR AND TETRAHEDRAL BASIS FOR HIGH-ORDER (HP) FINITE ELEMENT METHODS , 1995 .

[10]  Claudio Canuto,et al.  Spectral Methods: Evolution to Complex Geometries and Applications to Fluid Dynamics (Scientific Computation) , 2007 .

[11]  Per-Gunnar Martinsson,et al.  A Direct Solver with O(N) Complexity for Variable Coefficient Elliptic PDEs Discretized via a High-Order Composite Spectral Collocation Method , 2013, SIAM J. Sci. Comput..

[12]  Vipin Kumar,et al.  A Fast and High Quality Multilevel Scheme for Partitioning Irregular Graphs , 1998, SIAM J. Sci. Comput..

[13]  J. Oden,et al.  A Posteriori Error Estimation in Finite Element Analysis , 2000 .

[14]  Per-Gunnar Martinsson,et al.  A Fast Direct Solver for a Class of Elliptic Partial Differential Equations , 2009, J. Sci. Comput..

[15]  Will Pazner,et al.  Efficient low-order refined preconditioners for high-order matrix-free continuous and discontinuous Galerkin methods , 2019, SIAM J. Sci. Comput..

[16]  Per-Gunnar Martinsson,et al.  A direct solver for elliptic PDEs in three dimensions based on hierarchical merging of Poincaré-Steklov operators , 2016, J. Comput. Appl. Math..

[17]  Marjorie A. McClain,et al.  A Survey of hp-Adaptive Strategies for Elliptic Partial Differential Equations , 2011 .

[18]  Robert Michael Kirby,et al.  Nektar++: An open-source spectral/hp element framework , 2015, Comput. Phys. Commun..

[19]  William F. Mitchell,et al.  A collection of 2D elliptic problems for testing adaptive grid refinement algorithms , 2013, Appl. Math. Comput..

[20]  Yabin Zhang,et al.  A fast direct solver for boundary value problems on locally perturbed geometries , 2018, J. Comput. Phys..

[21]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[22]  Sheehan Olver,et al.  A Fast and Well-Conditioned Spectral Method , 2012, SIAM Rev..

[23]  L. Demkowicz One and two dimensional elliptic and Maxwell problems , 2006 .

[24]  Per-Gunnar Martinsson,et al.  A spectrally accurate direct solution technique for frequency-domain scattering problems with variable media , 2013, 1308.5998.

[25]  Lloyd N. Trefethen,et al.  Solving Laplace Problems with Corner Singularities via Rational Functions , 2019, SIAM J. Numer. Anal..

[26]  Anthony T. Patera,et al.  Spectral element multigrid. I. Formulation and numerical results , 1987 .

[27]  Ivo Babuška,et al.  The h-p version of the finite element method , 1986 .

[28]  Christophe Geuzaine,et al.  Gmsh: A 3‐D finite element mesh generator with built‐in pre‐ and post‐processing facilities , 2009 .

[29]  Adrianna Gillman,et al.  An Adaptive High Order Direct Solution Technique for Elliptic Boundary Value Problems , 2017, SIAM J. Sci. Comput..

[30]  Per-Gunnar Martinsson,et al.  An O(N) algorithm for constructing the solution operator to 2D elliptic boundary value problems in the absence of body loads , 2013, Advances in Computational Mathematics.

[31]  L. Trefethen Spectral Methods in MATLAB , 2000 .

[32]  Chris H. Rycroft,et al.  Efficient Operator-Coarsening Multigrid Schemes for Local Discontinuous Galerkin Methods , 2018, SIAM J. Sci. Comput..

[33]  Stefano Zampini,et al.  MFEM: a modular finite element methods library , 2019, 1911.09220.

[34]  M. G. Duffy,et al.  Quadrature Over a Pyramid or Cube of Integrands with a Singularity at a Vertex , 1982 .

[35]  Alex Townsend,et al.  Fast Poisson solvers for spectral methods , 2017, IMA Journal of Numerical Analysis.

[36]  G. Karniadakis,et al.  Spectral/hp Element Methods for Computational Fluid Dynamics , 2005 .

[37]  Per-Gunnar Martinsson,et al.  HPS Accelerated Spectral Solvers for Time Dependent Problems. , 2018, 1811.04555.

[38]  L. Kovasznay Laminar flow behind a two-dimensional grid , 1948 .

[39]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[40]  Yvon Maday,et al.  Spectral element multigrid. II. Theoretical justification , 1988, J. Sci. Comput..

[41]  Robert Michael Kirby,et al.  Nektar++: enhancing the capability and application of high-fidelity spectral/hp element methods , 2019, Comput. Phys. Commun..

[42]  Ronald F. Boisvert,et al.  NIST Handbook of Mathematical Functions , 2010 .

[43]  P. Martinsson,et al.  An accelerated Poisson solver based on multidomain spectral discretization , 2016, BIT Numerical Mathematics.