Study on the Application Scheme of Aerodynamic Coefficient Identification Based on the Differential Evolution Algorithm

The present paper studies the application schemes of aerodynamic coefficient identification based on the differential evolution (DE) algorithm from free flight data. Two identification schemes utilizing the DE algorithm are proposed, including the whole discrete point (WDP) scheme and the differential interval linear (DIL) scheme. Several comparative tests are conducted to study the performances of the two schemes by using the noisy simulated flight data and the measured radar data. The results show satisfactory performance in estimating the aerodynamic coefficients for the two schemes. The WDP scheme provides more accurate and robust coefficients estimates in exchange of more than two times greater computational effort compared with the DIL scheme.

[1]  Mehdi Ghoreyshi,et al.  Forced motions design for aerodynamic identification and modeling of a generic missile configuration , 2018 .

[2]  Ankur Singhal,et al.  Estimation of Drag Coefficient from Radar-tracked Flight Data of a Cargo Shell , 2008 .

[3]  Ke Liang,et al.  Optimal design of the aerodynamic parameters for a supersonic two-dimensional guided artillery projectile , 2017 .

[4]  Se-Yoon Oh,et al.  Magnus and Spin-Damping Measurements of a Spinning Projectile Using Design of Experiments , 2010 .

[5]  D. B. Kirk,et al.  A Method for Extracting Aerodynamic Coefficients from Free-Flight Data , 1969 .

[6]  Alessandro Pontillo,et al.  Parameters estimation methodology for the nonlinear rolling motion of finned cylindrical body , 2019, Aerospace Science and Technology.

[7]  Rainer Storn,et al.  Differential Evolution – A Simple and Efficient Heuristic for global Optimization over Continuous Spaces , 1997, J. Glob. Optim..

[8]  Christophe Grignon,et al.  Identification of aerodynamic coefficients of a projectile and reconstruction of its trajectory from partial flight data , 2014 .

[9]  Ponnuthurai N. Suganthan,et al.  Recent advances in differential evolution - An updated survey , 2016, Swarm Evol. Comput..

[10]  Durga Toshniwal,et al.  Vinayaka : A Semi-Supervised Projected Clustering Method Using Differential Evolution , 2012, International Journal of Software Engineering & Applications.

[11]  M. Costello,et al.  Using computational fluid dynamic/rigid body dynamic results to generate aerodynamic models for projectile flight simulation , 2008 .

[12]  Sijiang Chang,et al.  Aerodynamic Parameter Estimation of a Symmetric Projectile Using Adaptive Chaotic Mutation Particle Swarm Optimization , 2016 .

[13]  Zeal-Sain Kuo,et al.  Parameter Identification of Spin-Stabilized Projectiles Using a Modified Nowton-Raphson Minimization Technique , 2000 .

[14]  J LIJIN,et al.  Aerodynamic characteristics of an ogive-nose spinning projectile , 2018 .

[15]  Patrice Bailly,et al.  Identification of aerodynamic coefficients of a kinetic energy projectile from flight data , 2013 .

[16]  K. W. Iliff,et al.  Parameter Estimation for Flight Vehicles , 1989 .

[17]  Damir Jerković,et al.  The prediction of axial aerodynamic coefficient reduction using base bleed , 2013 .

[18]  Bradley T. Burchett Aerodynamic parameter identification for symmetric projectiles: An improved gradient based method , 2013 .