An intuitive hardware layout for personalized augmentative and alternative communication systems

The complexity of the interaction between user and computer can limit usability in products. When products are aimed at individuals with disability, the complexity increases the cognitive load and can reduce performances. The identification of interaction models and usability issues plays a role in product development as it enables designers to reduce this complexity. Methodology to identify lacking areas in products are required and permits to correct issues leading to an improvement of performances. A custom Augmentative and Alternative Communication system was developed for a student of the University of Naples Federico II. The user has complex communication needs and motor impairments and requires a personalized device to communicate. To promote an efficient interaction, hardware and software interfaces were personalized. Several studies were conducted: a usability evaluation, determination of the learning rate and Hardware/Software layout optimization were used to reduce the cognitive demands required by the system in its functioning. In this paper the HW layout optimization is investigated and strategies to reduce the cognitive load modifying order and position of the sensors of the input peripherals are provided.