A high density field reversed configuration (FRC) target for magnetized target fusion: First internal profile measurements of a high density FRC

Magnetized target fusion (MTF) is a potentially low cost path to fusion, intermediate in plasma regime between magnetic and inertial fusion energy. It requires compression of a magnetized target plasma and consequent heating to fusion relevant conditions inside a converging flux conserver. To demonstrate the physics basis for MTF, a field reversed configuration (FRC) target plasma has been chosen that will ultimately be compressed within an imploding metal liner. The required FRC will need large density, and this regime is being explored by the FRX–L (FRC-Liner) experiment. All theta pinch formed FRCs have some shock heating during formation, but FRX–L depends further on large ohmic heating from magnetic flux annihilation to heat the high density (2–5×1022 m−3), plasma to a temperature of Te+Ti≈500 eV. At the field null, anomalous resistivity is typically invoked to characterize the resistive like flux dissipation process. The first resistivity estimate for a high density collisional FRC is shown here. Th...

[1]  T. Intrator,et al.  Magnetic Field Measurements inside a Converging Flux Conserver for Magnetized Target Fusion Applications , 2002 .

[2]  R. Chrien,et al.  Field-reversed configuration profiles and resistivities inferred from the radial line-integral density profile , 1987 .

[3]  M. Tuszewski,et al.  Adiabatic compression of elongated field‐reversed configurations , 1983 .

[4]  Ronald C. Kirkpatrick,et al.  Implosion of solid liner for compression of field reversed configuration , 2001 .

[5]  R. K. Linford,et al.  Experimental studies of field‐reversed configuration translation , 1986 .

[6]  Ronald C. Kirkpatrick,et al.  Experimental measurements of a converging flux conserver suitable for compressing a field reversed configuration for magnetized target fusion , 2002 .

[7]  S. Gotô,et al.  Estimation of the electrical resistivity in field‐reversed configuration plasmas from detailed interferometric measurements , 1989 .

[8]  R. D. Milroy,et al.  Numerical studies of a field‐reversed theta‐pinch plasma , 1982 .

[9]  W. Armstrong,et al.  Field‐reversed experiments (FRX) on compact toroids , 1981 .

[10]  W. Grossmann,et al.  Thetapinch experiments with trapped antiparallel magnetic fields , 1971 .

[11]  Kurt F. Schoenberg,et al.  FRX-L: A field-reversed configuration plasma injector for magnetized target fusion , 2003 .

[12]  Phillips,et al.  Minimum dissipation rates in magnetohydrodynamics. , 1988, Physical review. A, General physics.

[13]  A. Ishida,et al.  Relaxation of a Two-Specie Magnetofluid , 1997 .

[14]  J. Slough,et al.  Poloidal flux loss and axial dynamics during the formation of a field‐reversed configuration , 1987 .

[15]  J. Slough,et al.  The large-s field-reversed configuration experiment , 1993 .

[16]  M. Tuszewski Excluded flux analysis of a field reversed plasma , 1980 .

[17]  M. Tuszewski,et al.  Particle transport in field‐reversed configurations , 1982 .

[18]  C. Fowler,et al.  Megagauss Technology and Pulsed Power Applications , 1987 .

[19]  J. Slough,et al.  Formation of field-reversed configurations using scalable, low-voltage technology , 1986 .

[20]  R. D. Ford,et al.  Rotational Stabilization of an Imploding Liquid Cylinder , 1976 .

[21]  R. Milroy,et al.  Poloidal flux loss in a field‐reversed theta pinch , 1982 .

[22]  B. Dasgupta,et al.  Field-Reversed Configuration (FRC) as a Minimum-Dissipative Relaxed State with Flow , 2001 .

[23]  Tadashi Sekiguchi,et al.  Plasma Physics and Controlled Nuclear Fusion Research , 1987 .

[24]  Ronald C. Kirkpatrick,et al.  Magnetized Target Fusion: An Overview , 1995 .

[25]  M. Tuszewski,et al.  Axial dynamics in field‐reversed theta pinches. II: Stability , 1991 .

[26]  M. Tuszewski,et al.  Field reversed configurations , 1988 .