LASER PHOTOLYSIS OF RETINAL AND ITS PROTONATED AND UNPROTONATED n‐BUTYLAMINE SCHIFF BASE

Abstract—The pulsed ruby laser (347 nm) flash photolysis technique has been used to measure the triplet‐triplet absorption spectra and triplet lifetimes of trans ‐retinal, N‐frans‐retinylidene‐n ‐butylamine (NRBA), and protonated NRBA (NRBAH+) at room temperature. In methylcyclohexane solution, the triplet lifetimes are in the range 10–20 μs and decrease in the order NRBAH+ > NRBA > trans ‐retinal. Intersy stem‐crossing efficiencies (φISC) were determined by a comparison technique using anthracene and 1,2‐benzanthracene as reference compounds. For trans ‐retinal, φISC is 0–50 pM 0–05 in methylcyclohexane and 0–08 in methanol, which confirms that earlier values of 0–11 and 0–017 in these solvents are in error. For NRBA and NRBAH+ in methylcyclohexane, ΦISC values are 0008 and < 0–001, respectively. Evidence is presented for a significant solvent effect in the isomerization of retinal via the triplet state, and that cisφtrans isomerization occurs from the triplet state of NRBAH+. The relation between the intersystem‐crossing properties of model compounds and the photochemistry of rhodopsin is discussed.

[1]  T. Rosenfeld,et al.  Role of the triplet state in the photoisomerization of retinal isomers , 1974 .

[2]  R. Becker,et al.  Visual pigments. 3. Determination and interpretation of the fluorescence quantum yields of retinals, Schiff bases, and protonated Schiff bases. , 1973, Journal of the American Chemical Society.

[3]  J. Huber,et al.  PHOTOCHEMISTRY OF FLAVINS—I. CONVENTIONAL AND LASER FLASH PHOTOLYSIS STUDY OF ALLOXAZINE , 1973, Photochemistry and photobiology.

[4]  T. Rosenfeld,et al.  Primary photoprocesses in retinol , 1973 .

[5]  R. Raubach,et al.  Photoisomerization pathways in the visually important polyenes. I. The retinals. , 1973, The Journal of physical chemistry.

[6]  E. Land,et al.  THE IN VITRO PHOTOCHEMISTRY OF BIOLOGICAL MOLECULES‐III. ABSORPTION SPECTRA, LIFETIMES AND RATES OF OXYGEN QUENCHING OF THE TRIPLET STATES OF β‐CAROTENE, RETINAL AND RELATED POLYENES , 1973, Photochemistry and photobiology.

[7]  E. Land,et al.  THE TRIPLET STATE OF RETINAL: IS IT INVOLVED IN VISION? , 1973, Photochemistry and photobiology.

[8]  P. Rentzepis,et al.  Formation and decay of prelumirhodopsin at room temperatures. , 1972, Proceedings of the National Academy of Sciences of the United States of America.

[9]  Y. Kito,et al.  ABSORPTION SPECTRA OF TCA‐DENATURED RHODOPSIN AND OF A SCHIFF BASE COMPOUND OF RETINAL , 1972, Photochemistry and photobiology.

[10]  R. Becker,et al.  The hydrogen-bonded (protonated ) Schiff base of all-trans-retinal. , 1971, Journal of the American Chemical Society.

[11]  R. Raubach,et al.  Singlet-triplet absorption spectrum of all-trans-retinal. , 1971, Journal of Physical Chemistry A.

[12]  R. H. Johnson,et al.  EFFECT OF SOLUTION ENVIRONMENT ON THE ABSORPTION MAXIMA OF SCHIFF BASES OF RETINAL * , 1971, Photochemistry and photobiology.

[13]  R. Becker,et al.  Comprehensive investigation of the spectroscopy and photochemistry of retinals. I. Theoretical and experimental considerations of absorption spectra. , 1971, Journal of the American Chemical Society.

[14]  E. Land,et al.  Triplet-triplet extinction coefficients via energy transfer , 1971 .

[15]  A. Sykes,et al.  The “in-vitro” photochemistry of biological molecules. Part 1.—Energy transfer reactions involving retinol (Vitamin A) , 1971 .

[16]  J. K. Thomas,et al.  Formation of ions and excited states in the laser photolysis of solutions of pyrene , 1970 .

[17]  A. Kropf,et al.  THE PHOTOISOMERIZATION OF RETINAL * , 1970, Photochemistry and photobiology.

[18]  C. S. Irving,et al.  Spectroscopic model for the visual pigments. Influence of microenvironmental polarizability. , 1970, Biochemistry.

[19]  R. P. Poincelot,et al.  Lipid to Protein Chromophore Transfer in the Photolysis of Visual Pigments , 1969, Nature.

[20]  A. Sykes,et al.  The triplet state of lycopene , 1969 .

[21]  E. W. Abrahamson,et al.  VISUAL PIGMENTS: THEIR SPECTRA AND ISOMERIZATIONS * , 1968, Photochemistry and photobiology.

[22]  G. Wald The molecular basis of visual excitation. , 1968, Nature.

[23]  P. E. Blatz,et al.  N-retinylidene-1-amino-2-propanol: a Schiff base analog for rhodopsin. , 1968, Vision research.

[24]  A. R. Horrocks,et al.  Triplet state formation efficiencies of aromatic hydrocarbons in solution , 1968, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[25]  C. S. Irving,et al.  SPECTROSCOPIC BEHAVIOR OF ALL‐TRANS RETINAL AND ITS SCHIFF BASES IN VARIOUS MEDIA. THE ROLE OF CONFORMATIONAL PERTURBATION , 1968 .

[26]  H. Dartnall The photosensitivities of visual pigments in the presence of hydroxylamine. , 1968, Vision research.

[27]  D. Bownds Site of Attachment of Retinal in Rhodopsin , 1967, Nature.

[28]  Karl Weiss,et al.  The laser photolysis of methylene blue , 1967 .

[29]  M. Akhtar,et al.  The active site of the visual protein, rhodopsin , 1967 .

[30]  E. W. Abrahamson,et al.  The photochemical and macromolecular aspects of vision. , 1967, Progress in biophysics and molecular biology.

[31]  W. Moreau,et al.  Transfer apparatus for degassed solutions , 1966 .

[32]  E. W. Abrahamson,et al.  Protein configuration changes in the photolysis of rhodopsin. II. The sequence of intermediates in thermal decay of cattle metarhodopsin in vitro. , 1966, Biochimica et biophysica acta.

[33]  F. Wilkinson,et al.  Mechanism of fluorescence quenching in solution. Part 1.—Quenching by bromobenzene , 1965 .

[34]  D. C. Pratt,et al.  FLASH PHOTOLYSIS OF ROD PARTICLE SUSPENSIONS , 1964 .

[35]  K. Sandros Transfer of triplet state energy in fluid solutions , 1964 .

[36]  George Wald,et al.  Tautomeric Forms of Metarhodopsin , 1963, The Journal of general physiology.

[37]  G. Wald,et al.  Pre-Lumirhodopsin and the Bleaching of Visual Pigments , 1963, Nature.

[38]  E. W. Abrahamson,et al.  POPULATION AND DECAY OF THE LOWEST TRIPLET STATE IN POLYENES WITH CONJUGATED HETEROATOMS: RETINENE , 1962 .

[39]  K. Grellmann,et al.  A Flash-Photolytic Investigation of Rhodopsin at Low Temperatures , 1962, Nature.

[40]  R. Memming,et al.  Some Flash-photolytic and Photochemical Studies of Retinene and Related Compounds , 1962 .

[41]  C. Bridges Studies on the flash-photolysis of visual pigments-III: Interpretation of the slow thermal reactions following flash-irradiation of frog rhodopsin solutions , 1962 .

[42]  G. Porter,et al.  Energy transfer from the triplet state , 1961, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[43]  S. McGlynn,et al.  Energy Transfer in Molecular Complexes. II. The Anthracene‐sym‐Trinitrobenzene Complex , 1960 .

[44]  V. J. Wulff,et al.  Reversible Spectral Changes in Retinene Solutions Following Flash Il-lumination , 1959 .

[45]  K. Sarkanen,et al.  The Absorption Spectra and Decay Kinetics of the Metastable States of Chlorophyll A and B1 , 1958 .

[46]  R Hubbard,et al.  THE ACTION OF LIGHT ON RHODOPSIN. , 1958, Proceedings of the National Academy of Sciences of the United States of America.

[47]  R. A. Morton,et al.  Studies on rhodopsin. VIII. Retinylidenemethylamine, an indicator yellow analogue. , 1955, The Biochemical journal.